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Cyanobacterial algal bloom is a major water quality issue in inland lakes, 

reservoirs, and estuarine environments because of its scum and bad odor forming and 

toxin producing abilities. Health risks from cyanobacterial toxin can vary from skin 

irritations to fever, intestinal problems, and neurological disorders. Terminations of 

blooms also cause oxygen depletion leading to hypoxia and widespread fish kills. Adding 

to the problem, many species of cyanobacteria produce odorous compounds such as 

geosmin and 2-methylisoborneol (MIB) that cause “earthy-muddy” and “musty” odor in 

drinking water, which is also a serious issue in aquaculture and drinking water industry. 

Therefore continuous monitoring of cyanobacterial presence in recreational water bodies, 

surface drinking water sources, and water bodies dedicated for aquaculture is highly 

required for their early detection and subsequent issuance of a health warning and 

reducing the economic loss.  

Remote sensing techniques offers the capability of identifying and monitoring 

cyanobacterial blooms in a synoptic scale. Over the years, the scientific community has 

focused on developing methods to quantify cyanobacterial biomass using phycocyanin, 
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an accessory photosynthetic pigment, as a marker pigment. However, because of the 

confounding influence of chlorophyll-a and other photo pigments, remote retrieval of 

phycocyanin signal from turbid productive water has been a difficult task. This 

dissertation analyzes the potential of remote sensing techniques and develops empirical 

and quasi-analytical algorithms to isolate the phycocyanin signal from the remote sensing 

reflectance data using a set of radiative transfer equations and retrieves phycocyanin 

concentration in the water bodies. An extensive dataset, consisting of in situ radiometric 

measurements, absorption measurements of phytoplankton, colored dissolved organic 

matter, detritus, and pigment concentration, was used to optimize the algorithms. 

Validations of all algorithms were also performed using an independent dataset and errors 

and uncertainties from the algorithms were discussed. Despite the simplicity, an 

empirical model produced highest accuracy of phycocyanin retrieval, whereas, the newly 

developed quasi-analytical phycocyanin algorithm performed better than the existing 

semi-analytical algorithm. Results show that remote sensing techniques can be used to 

quantify cyanobacterial phycocyanin abundance in turbid and hypereutrophic waters.
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Cyanobacterial harmful algal bloom is a major water quality problem in inland 

lakes, reservoirs, estuarine, and coastal waters. Many genera of cyanobacteria (Anabaena 

spp., Microcystis aeruginosa, Cylindrospermopsis raciborskii) produce several types of 

toxins such as: neurotoxins (anatoxin-a), hepatotoxins (microcistin), and cytotoxins 

(cylindrospermopsins) (Skulberg et al., 1992; Metcalf et al., 2008). Their toxin and bad 

odor causing capabilities have drawn attention for early detection by frequent monitoring 

of water quality. Traditional laboratory analysis based monitoring of water quality is time 

consuming, expensive, and often a very difficult task. However, unique optical properties 

of phycocyanin (PC), a characteristic cyanobacterial photosynthetic pigment, in visible 

and near-Infrared wavelength range can be used to develop algorithms/techniques that 

can detect and quantify cyanobacterial biomass in natural water bodies. Cyanobacterial 

light harvesting pigments are composed of chlorophylls, carotinoids, and an accessory 

photosynthetic phycobilin pigment, PC. It is widely accepted that PC can be considered 

as the diagnostic photosysnthetic pigment of cyanobacteria and hence an indicator of the 

presence of cyanobacterial biomass. Fortunately, PC has very distinct absorption 

characteristics (Amax at 620 nm) that is prominent in reflectance spectra acquired from 

cyanobacteria dominated water bodies (Glazer 1989; Richardson 1996). When the 
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cyanobacterial biomass dominate the water body, the reflectance spectra shows an 

enhanced absorption feature between 600 to 625 nm and a reflectance maximum at 

around 650 nm (Dekker et al., 1993; Kutser et al., 2006; Mishra et al., 2009) which can 

be used to fingerprint cyanobacteria in remotely sensed data. 

Over the past years, researchers have been reasonably successful in exploiting PC 

absorption feature at 620 nm to develop empirical, semi-empirical, and semi-analytical 

models. Most research pertaining to the detection and mapping of cyanobacteria from in 

situ remote sensing data have used the absorption and reflectance features at 620 and 650 

nm to develop relationships between Rrs and PC concentrations. From a comprehensive 

literature review it was found that most of the researchers have focused on four broad 

types of algorithms to quantify PC based on its absorption feature at 620 nm. The four 

algorithms include: 1) a single reflectance band ratio empirical algorithm (Schalles and 

Yacobi, 2000); 2) Semi-empirical baseline algorithm (Dekker, 1993); 3) Multiple Band 

Linear Regression Algorithm (Vincent et al., 2004); and 4) a nested semi-analytical band 

ratio algorithm (Simis et al., 2005). Each algorithm has been further explained and their 

pros and cons have been discussed below. 

1.1.1 Band ratio empirical algorithms 

Schalles and Yacobi (2000) developed a reflectance band ratio model using 

maximum reflectance between 640 and 660 nm and minimum reflectance between 615 

and 635 nm to detect PC. The radiometric quantities that were used to develop the 

algorithm included ratios of radiance measured just beneath the water surface, 0 , , 

and the radiance of a lambertian Spectralon panel, 0 , /  denoted as R(λ). 
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 0.97 /0.000912 (1.1) 

The main advantage of this algorithm is its simplicity to use. Being an empirical 

relationship between a simple band ratio and the measured PC concentration, by 

definition, this algorithm is not sensitive to types of radiometric measurements and 

radiometers used. Ruiz-Verdu et al. (2007) present an in-depth evaluation of this 

algorithm using two datasets acquired by two different radiometers including: 1) PR-650 

(Photo Research Inc.), and 2) ASD-FR (Analytical Spectral devices, Inc.). They reported 

that the above mentioned band ratio algorithm was least sensitive to the radiometer types 

and showed minimal difference in the estimated PC concentration between the two 

datasets. However, this algorithm is prone to negative predictions because of its band 

architecture. By definition, this model will predict negative PC concentration when the 

reflectance ratio is less than 0.97 which is very common in turbid waters with low 

cyanobacteria concentration (Ruiz-Verdu et al., 2008). In their validation study, Ruiz-

Verdu et al. (2008) showed that the single band ratio algorithm predicted 36.4% of the 

data negative. Mishra et al. (2009) have shown that 650  is very sensitive to optical 

properties of other photosynthetic pigments such as chlorophyll-a, (chl-a), and chl-b 

absorption, and allo-phycocyanin fluorescence. Any variations in these pigment 

concentration also affect the band ratio and the prediction accuracy. In addition, the 

required bands are only available on airborne and space-borne hyperspectral sensors. 

Therefore, it is not feasible to use this algorithm for regular PC monitoring activities in a 

large spatial scale using conventional multispectral satellite data. 
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1.1.2 Semi-empirical baseline algorithm 

Semi-empirical baseline algorithm proposed by Dekker (1993) exploits the relative 

magnitude of the reflectance trough at 620 nm with respect to the center of a baseline 

between 600 nm and 648 nm. The algorithm was developed using data from shallow 

eutrophic lakes in Netherlands. Dekker (1993) proposed the original algorithm as: 

 24.6 13686 0.5 600 648 624  (1.2) 

where,  is the sub-surface irradiance reflectance measured just below the air-water 

interface.  The main advantage of this algorithm is its minimal sensitivity to uncertainties 

in radiometric measurements. Band differencing associated with this algorithm offsets the 

measurement uncertainties (Ruiz-Verdu et al., 2008). Similar to the band ratio empirical 

algorithm, the major drawback of this model is its sensitivity to confounding photo 

pigments other than PC because of the inclusion of the band at 648 nm (Mishra et al., 

2009). It predicts negative values when the difference between mid-point of the baseline 

and 648   falls below 0.0018 that is also common in turbid waters with low 

cyanobacterial abundance. This makes the algorithm vulnerable to negative predictions 

with higher relative error for PC concentrations lower than 10 mg m-3. Also because of 

the required spectral resolution of 2 nm, the algorithm is only suitable for hyperspectral 

sensors and presently not feasible for regular monitoring activities. 

1.1.3 Multiple band linear regression algorithm 

Vincent et al. (2004) developed a spectral band ratio model to quantify PC 

concentrations in Lake Erie, OH, USA using Landsat 7 ETM+ data and were successful 
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in detecting and mapping PC in the western basin of Lake Erie. The proposed multiple 

linear regression model using multiple band ratios was as follows: 

 47.7 9.21	 29.7 118 	 6.81  

 41.9 14.7   (1.3) 

where, Bn represents the dark-object subtracted digital numbers in the nth Landsat 

spectral band. It was the first model to be developed for Landsat data to monitor 

cyanobacterial blooms in inland lakes. The main advantage of this model is the high 

spatial resolution of Landsat data (30	  30 m) as compared to other dedicated ocean color 

sensors. However, the poor temporal resolution was the major hurdle for regular 

monitoring of cyanobacterial harmful algal bloom in inland lakes. Based on the fact that 

Landsat bands do not have the capability to spectrally distinguish the cyanobacteria from 

other type of algae, this multiple band ratio algorithm with bands in Visible and Mid-

Infrared wavelength range might simply be detecting any species of phytoplankton in the 

water (Kutser, 2006). Hence, this algorithm requires further validation to prove its 

sensitivity to phycocyanin concentration in cyanobacteria. 

1.1.4 Nested band semi-analytical algorithm 

Nested band semi-analytical algorithm (Simis et al., 2005) estimates absorption 

coefficient of PC at 620 nm, 620 ,	and relates to PC concentration through the PC 

specific absorption coefficient, ∗ 620 . It uses reflectance measurements at 620, 665, 

709, and 779 nm matching the Medium Range Imaging Spectroradiometer (MERIS) 

channels 6, 7, 9, and 12 respectively. Simis et al. (2005) algorithm follows three steps to 

quantify PC concentration. First, it estimates chl-a concentration using a semi-analytical 
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approach as in Gons et al. (1999); second, it derives the chl-a absorption at the 

phycocyanin absorption band (620 nm), subtracts the chl-a contribution at 620 nm, and 

thus theoretically isolates PC absorption at 620 nm; third, using specific absorption 

coefficient of phycocyanin at 620 nm, it estimates PC concentration. To achieve the 

above mentioned steps, back-scattering coefficient at 779 nm (  is derived and then 

chl-a absorption coefficient at 665 nm and PC absorption at 620 nm are derived as given 

below: 

 665 	 708 665 	  (1.4) 

where, 	 665  is the absorption by chl-a at 665 nm. 	is the back-scattering 

coefficient derived, after assuming spectral homogeneity, as below: 

 
. 		 	

. .
 (1.5) 

 620 	 708 620 	 665 (1.6) 

Model parameters γ and δ empirically relates the model retrieved aφ(665) and 

aφ(620) to corresponding pad-measured values. Note that the algorithm retrieves non-

water absorption, at-w(665) and at-w(620) in Eq. 1.4 and 1.6; but treats them as achl(665) 

and achl(620)+aPC(620) by assuming aCDM(665) and aCDM(620) is negligible. Finally, PC 

concentration is derived as: 

 	 ∗  (1.7) 

Randolph et al. (2008) validated the semi-empirical algorithm developed by Simis 

et al. (2005) and reported that the performance of the algorithm was promising in 
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retrieving PC concentrations and estimating cyanobacterial abundance in Geist and 

Morse reservoirs, IN, USA. However, further validation and fine-tuning of Simis et al. 

(2005) algorithm using spectroscopic studies was suggested. Similarly, Hunter et al. 

(2010) evaluated the performance of Simis et al., (2005) algorithm and documented its 

promising performance as compared to other existing PC algorithms. It was able to 

retrieve PC concentration within 10-200 mg m-3
 with better accuracy. However, the 

model significantly over and underestimated the PC concentration below 10 mg m-3 and 

above 200 mg m-3 respectively.  

In another study, Simis et al. (2007) documented the influence of phytoplankton 

pigments other than chl-a on the remote estimation of cyanobacterial biomass. They 

concluded that the presence of chl-a, b and c, and pheophytin tend to overestimate the PC 

concentrations in predictive models, and the estimation errors tend to be significant at 

low PC concentrations. They also concluded that even if a semi-empirical model to 

predict PC concentrations is corrected for chl-a, the absorption by the above mentioned 

pigments still influences the 620 nm absorption thereby affecting the estimation accuracy 

of PC retrieval.  

1.2 Research question 

Studies have shown that the nested semi-analytical algorithm (Simis et al., 2005) 

outperforms all other existing PC algorithms. The very feature of removal of chl-a effect 

at the absorption band of PC distinguishes it from the rest of the algorithms.  In case-2 

type inland lakes and coastal waters,  where optical properties are significantly influenced 

by CDOM, detritus, mineral particles that do not co-vary with the phytoplankton pigment 

concentration, water quality remote sensing is even more complex. In these types of 
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optically complex waters, the assumptions considered in Simis et al. (2005) algorithm 

such as: 1) the spectrally neutral back-scattering coefficient, and 2) influence of 

absorption by CDOM and detritus at 665 nm is negligible might fail. If the inversion 

algorithm overestimates absorption by chl-a concentration at 665 nm, the same error 

propagates to the estimation of 620 . Besides, the model parameters γ and δ play 

critical role in retrieving achl(665) and aPC(620) from Rrs(λ). Any uncertainty with these 

parameters will directly affect the algorithm's accuracy. Selecting the appropriate γ and δ 

is a big challenge as they tend to vary with geographic regions, or even in the same 

region but at a different time, and with optical condition of the waters. 

Understanding the optical complexities of case-2 water types, I propose to use a 

quasi-analytical algorithm (QAA) (Lee et al., 2002) to derive aφ(λ). QAA is an algebraic 

inversion algorithm that was designed to convert multiband Rrs data into inherent optical 

properties such as total absorption and scattering coefficients, at(λ) and bb(λ), in the 

visible wavelength range. Further, based on the spectral properties, it decomposes   

into two absorption components including 1) ,and 2) a combined absorption by 

detritus and colored dissolved organic matter (CDOM), . In this research, 

620  was further decomposed to retrieve 620  and use it for retrieval of PC. 

As outlined above, chl-a also absorbs light energy at PC absorption maximum, 

~620 nm. Therefore, accurate retrieval of PC concentration depends on the degree of 

accuracy of aφ(620) retrieval from Rrs(λ) as well as the separation of chl-a effect from the 

PC signal. The questions this dissertation addresses are:  
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1) Will a better chl-a correction scheme increase the accuracy of PC retrieval?  

2) Will quasi-analytical approach reduce the PC estimation error as compared to 

empirical and semi-analytical approach? 

1.3 Objectives 

This dissertation focuses on developing empirical, and quasi-analytical algorithms 

to retrieve PC concentration in cyanobacteria using remotely sensed data. The models 

were developed using radiative transfer theory and in situ data including hyperspectral 

Rrs(λ) spectra, absorption coefficients of phytoplankton, CDOM, detritus, and pigment 

measurements. The specific objectives are:  

1) Study the spectral properties of cyanobacteria and the interaction between chl-a 

on PC optical features.   

2) Develop a reflectance band ratio empirical model to quantify cyanobacteria. 

Compare its performance with existing empirical and semi-analytical algorithms. 

3) Parameterize the QAA algorithm using in situ bio-optical dataset collected from 

several inland aquaculture ponds with highly turbid and productive waters; 

validate the algorithm using an independent dataset collected from the same area 

in a different year. 

4) Develop a QAA for PC using hyperspectral data acquired using a field 

spectroradiometer.  

5) Develop an index using Rrs data measured at red and NIR wavelength region to 

quantify chl-a concentration in turbid and productive water.  
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1.4 Outline of the dissertation 

This dissertation consists of 7 chapters. Chapter 1 provides the introduction to the 

nature of problem; outlines the state-of-the art methods and techniques in the literature; 

and lists the research objectives. Chapter 2 deals with a comprehensive analysis of 

spectral properties of cyanobacteria and its interaction with other photopigments.  

Chapter 3 deals with the development of a single reflectance band ratio empirical model 

to quantify cyanobacterial PC concentration and its validation using an independent 

dataset for accuracy assessment. Performance of the empirical model was also compared 

with a semi-analytical model. Addressing the limitations and challenges of empirical and 

semi-analytical algorithm, a quasi-analytical algorithm was also proposed in Chapter 4 

and 5. Chapter 4 focuses on paramaterizing the quasi-analytical algorithm for bio-optical 

inversion in turbid and hypereutrophic waters encountered in our study region. Validation 

and accuracy assessment of the algorithm was also carried out and discussed in this 

chapter. In Chapter 5, quasi-analytical algorithm for PC was conceptualized, calibrated, 

and validated using in situ data suite. In Chapter 6, a normalized band difference index is 

presented to quantify chl-a concentration in turbid productive waters.  Chapter 7 

compares the performance of all PC models, outlines the summary of the dissertation 

research, and highlights the future direction. 
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CHAPTER II 

SPECTRAL REFLECTANCE PROPERTIES OF CYANOBACTERIA 

2.1 Overview 

Understanding spectral reflectance properties of cyanobacteria is essential for 

remote sensing algorithm development. In this experimental study two species of 

cyanobacteria and one species of green algae were cultured in laboratory and reflectance 

spectra of algae were collected in controlled experiments. Results show that 

cyanobacterial reflectance peak located at ~650 nm is extremely sensitive to chlorophyll-

a absorption. Magnitude of the peak decreased and location of the peak moved towards 

longer wavelength with increasing chlorophyll-a concentration. On the other hand, the 

chlorophyll-a absorption feature moved towards shorter wavelength with increasing 

chlorophyll-a concentration. Therefore, inclusion of 650 nm reflectance feature in 

empirical phycocyanin models will produce erroneous model retrievals. 

2.2 Introduction 

Remote sensing offers the capability of identifying and mapping biophysical 

parameters in water bodies by observing subtle variations in the water color in temporal 

and spatial scale. As remote sensing reflectance Rrs(λ), the ratio of water leaving radiance 

to the downwelling solar irradiance, is primarily a function of absorption, a(λ), and back-

scattering, bb(λ) of incident light in the water column (Gordon et al., 1975), absorption of 
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a primary optically active component can be analytically obtained from Rrs(λ). However, 

prior knowledge of absorption spectrum of the target constituent is essential to select the 

wavelength region where the constituent is having the highest sensitivity and dominates 

the total absorption budget. Therefore, the success of an algorithm for remote detection of 

cyanobacteria depends on our understanding of its optical signature. In this experimental 

study, characteristic spectral reflectance properties of cyanobacteria have been 

investigated by measuring reflectance (%) and pigment data using laboratory cultured 

cyanobacteria. 

2.3 Methods 

2.3.1 Laboratory culture of cyanobacteria and green algae 

Two species of cyanobacteria, Synechocystis sp. (PCC 6803) and Anabena (also 

known as Nostoc) sp. PCC 7120 and one species of green algae (Ankistrodesmus 

falcatus) were grown in BG11 medium (Stanier et al., 1971) supplemented with 10 mM 

Hepes-KOH, pH 8.0.  Small cultures of 100 mL were grown in 500 mL Erlenmeyer 

flasks with shaking under constant illumination of cool white light at 40-80 mol photons 

m-1s-1 to the mid- to- late exponential phase of growth (OD730 = 0.8-1.5). Reflectance 

measurements were taken using these samples of cyanobacteria and green algae. 

2.3.2 Reflectance measurements 

Four experiments were conducted using a hyperspectral USB 4000 radiometer 

(Ocean Optics, Inc., Dunedin, Florida) for the spectroscopic analysis of the 

cyanobacterial species. The objective of these experiments was to study the spectral 

reflectance properties of cyanobacteria with changing pigment concentration. 
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Synechocystis was used in the first three experiments whereas Anabaena was studied in 

the fourth experiment. In all experiments, percent reflectance ( ) data of the two 

cyanobacterial species were acquired at varying concentrations and also in association 

with different concentrations of green algae. In the experiments, water samples that were 

scanned to acquire  data were prepared as follows. First, 100 mL of an exponential 

phase culture of a particular cyanobacteria species was mixed with 500 mL of tap water 

for dilution and the dilution sequence was continued by adding 100, 200, and 500 mL of 

tap water subsequently. 

Samples were placed in containers (20 L) painted black and scanned under 

controlled light from two 500 watt halogen lamps. Calibrated USB 4000 

spectroradiometer with a 25o field of view (FOV) optical fiber was used to acquire the 

above-surface upwelling radiance ,  data of the water samples. The 

spectroadiometer was calibrated by measuring the upwelling radiance ,  of a 

Spectralon reflectance standard with 99% reflectance (Labsphere, Inc., North Sutton, 

New Hampshire).  was computed using  the calibration panel coefficient (calcoeff) 

(available in the CALMIT Data Acquisition Program (CDAP;CALMIT, University of 

Nebraska-Lincoln).  data were collected within a range of 400-900 nm with a spectral 

resolution of 1 nm. The equation used to compute 	is presented below. 

 
	 	 ,

,
	 	

 (2.1) 

Phycocyanin (PC) and chlorophyll-a (chl-a) concentrations were measured after 

each dilution step by using a chlorophyll sensor (part no. 6025) and cyanobacteria sensor 

measuring PC abundance (part no. 6131) attached to a YSI 6600 Multi-parameter water 
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quality sonde (YSI Inc., Yellow Springs, Ohio). Chl-a sensor measures in a range 0 to 

500 µg L-1 with a resolution of 0.1 µg L-1  and linearity with an R2 of 0.9999 relative to 

serial dilution of rhodamine with solution in the range from 0 to 500 µg L-1.  

Cyanobacteria sensor measures in a range 0:280,000 cell mL-1. The resolution of the 

cyanobacteria sensor is 220 cells mL-1.  Linearity of the cyanobacteria (PC) sensor has R2 

of 0.9999 for serial dilution of rhodamine with solution from 0 to 400 µg L-1 (YSI user's 

manual). Sensors were calibrated before use as per the instructions in the YSI user 

manual. In the first experiment (Exp I), measured ranges of Chl-a and PC were 0.7 to 7.8 

µg/L and 7,050 to .247,960 cells mL-1, respectively. The same procedure and dilution 

sequence was repeated in the second experiment (Exp II) on a different day. The 

measured Chl-a and PC ranges for Exp II were varied from 1.8 to 3.7 µg/L and from 506 

to 126,570 cells mL-1 respectively.  

In experiment III and IV (Exp III and Exp IV), measurements were started with 

low concentrations of pigment in the water samples. Cyanobacteria cells from a dense 

culture were added step-wise to increase concentrations subsequently. The minimum and 

maximum concentration of recorded Chl-a and PC in Exp III were 2.1 and 21.9 µg L-1, 

and 4095 and 273,883 cells mL-1 respectively.  In Exp IV, Anabaena was studied with 

cell densities ranging from 4550 to 244,500 cells mL-1. The descriptive statistics of all 

experimental data are summarized in Table 2.1.    

Two additional datasets were acquired during Exp III and IV in order to study the 

reflectance spectra of Synechocystis and Anabaena in association with varying 

concentration of green algae (Ankistrodesmus falcatus). The objective was to study the 

influence of high Chl-a concentration on reflectance spectra of PC and the dynamics of 
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various optical features in PC reflectance spectra. The PC concentration was kept 

constant at 180,000 cells mL-1 for Synechocystis and 220,000 cells mL-1  for Anabaena; 

whereas the green algae concentration was increased in sequence for both of the 

experiments. This was achieved by keeping the Synechocystis or Anabaena at the above 

described concentration level, while continuing to add Ankistrodesmus in order to 

increase the non-cyanobacterial Chl-a concentration.  

2.4 Results and discussions 

2.4.1 Analysis of reflectance spectra 

Spectral characteristic features of the pigments Chl-a and PC are prominent in the 

reflectance spectra of Synechocystis (Exp I-III) and Anabaena (Exp IV) (Fig. 2.1). The 

green peak approximately at 550 nm is because of the scattering from algal cells in the 

water and also due to the relatively low absorption by Chl-a and carotenoids (Gitelson et 

al., 1999; Gitelson et al., 2000) (Fig. 2.1). The spectral troughs near 617 nm and 680 nm 

appear because of strong absorption by PC and Chl-a, respectively (Limasson et al., 

1973; Gitelson et al., 2000; Schalles and Yacobi, 2000), whereas the peak at 654 nm 

appears because of the prominent absorption on both sides at 617 nm and 680 nm and 

also because of the phycocyanin fluorescence maximum at 650 nm (Rowan, 1989). 

Similarly, a peak near 700 nm appears because of two strong absorption features on 

either side, one by Chl-a at 680 nm and the other by water itself at 750 nm (Gitelson et 

al., 1999). The spectral characteristics of Anabaena (the position of absorption minima 

and reflectance maxima) appeared similar to those found for Synechocystis PCC 6803 

(Fig. 2.1. D). 
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2.4.2 Usefulness of 654 nm peak in PC band ratio models 

It was observed from the experimental data that the peak at 654 nm, which 

appears because of the absorption by PC and Chl-a on both side at 617 and 680 nm 

respectively, is very dynamic in nature. Its appearance and magnitude depends on PC, 

Chl-a and b concentrations. Metasamma et al. (2006) reported that Rrs peak at 650 nm 

only appears and can be detected by remote sensing instruments (with 10 nm spectral 

resolution and 1000:1 signal-to-noise ratio) when Chl-a concentration reaches 8-10 mg 

m-3. However, in a few experiments it was observed that the 654 nm peak appeared on 

the reflectance spectra acquired by USB4000 (sampled at 10 nm spectral resolution with 

250:1 signal-to-noise ratio) even when the Chl-a and PC concentration were 0.7 µg L-1 

(or 0.7mg m-3) and 7050 cells mL-1, respectively (Fig. 2.2). On the other hand, in another 

experiment, the peak at 654 nm was not observed even when the Chl-a and PC 

concentrations were 7.4 µg L-1 and 21,050 cells mL-1 ,  respectively. That proved our 

intitial conclusion that the proportion of the concentration of PC to Chl-a controls the 

appearance of the 654 nm peak.  

Similarly in Exp III, when the Chl-a concentration was 2.1-7.4 µg L-1 and PC 

concentration was 4095-21050 cells mL-1, the high Chl-a concentration strongly absorbed 

light at 654 nm, thereby lowering the  ratio. Consequently, no peak appeared 

at 654 nm even if the PC concentration was sufficient enough to form the peak. Hence, 

two conclusions that can be drawn from the experimental data:  (1) when Chl-a 

concentration is ≥ 2.1 µgL-1, the 654 nm peak does not appear on the reflectance spectra 

of BG even with cell concentrations up to 21,050 cells mL-1, whereas the PC present in 

7050 cells mL-1 appears as a reflectance peak at 654 nm in the presence of 0.5µg L-1 of 
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Chl-a; (2) in the presence of high Chl-a concentration, absorption by Chl-a lowers   

and form 654 nm peak.  

Therefore, it is clear from the experiments that the appearance of the 654 nm peak 

depends on both Chl-a and PC concentration, and also on the 654 to 617 nm reflectance 

ratio. The specific absorption spectrum of PC shows that the absorption at  617 nm is 

three-fold higher than at 654 nm (Glazer, 1988), however, if Chl-a is also present in the 

water along with PC, the absorption at 654 nm would increase. Hence in the presence of 

high Chl-a, higher concentrations of PC are also required to be present in the water in 

order to form the prominent 654 nm peak. This suggests that  Chl-a is the major 

contributing pigment that affects the magnitude of the 654 nm peak. The predictive 

ability of the spectral band ratio algorithms containing  therefore depends on the 

concentration of Chl-a, and because of this, the 654 nm peak cannot be accurately used to 

quantify PC efficiently in the case of variable PC:Chl-a ratios in water.  

In the two additional experiments, the PC concentration was kept constant and the 

Chl-a concentration was increased in sequence by adding cultured Ankistodesmus to 

explore the dependence of the peak at 654 nm on Chl-a and Chl-b. The objective of the 

experiments was to study precisely the behavior of the 654 nm peak in the prescence of 

green algae. As the Chl-a concentration increased, the 654 nm peak shifted to 660 nm, 

and another reflectance peak appeared at 640 nm when the Chl-a concentration reached 

122.8 µg L-1 (Fig. 2.3. A, B). Movement of the 654 nm peak to 660 nm might be due to 

absorption by Chl-b which is a major accessory photopigment in green algae. On the 

other hand, the Chl-a absorption feature blue-shifted from 680 nm to 670 nm at 310 µg L-

1 of Chl-a. This blue-shift may be explained by the dominance of scattering by algal cells 
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and fluoresence by Chl-a at 680 nm over absorption at the same wavelength. Thus the 

 started increasing and the absorption by Chl-a became prominent at 670 nm.  

This instability of the 654 nm peak with increasing Chl-a and b also points to the lack of 

precision and utility of this peak in empirical models to quantify PC. 

2.5 Conclusions 

Experimental data obtained in this study confirm that a distinct trough observed 

around 620 nm in the reflectance spectrum of cyanobacteria can be attributed to the 

assessory photopigment phycocyain and used as an optical marker of cyanobacteria. 

However, non-cyanobacterial chl-a from other chlorophyll bearing organisms can 

significantly  affect the reflectance signal at 620 nm and cause the retrieval of 

phycocyanin erroneous. Therefore, contribution of chl-a  should be accurately quantified 

and subtracted from the phycocyanin signal at 620 nm to reduce the chl-a sensitivity of 

phycocyanin algorithms. Similarly, reflectance peak around 654 nm blue-shifted with 

increase in chl-a concentration. Because of its high sensitivity to chl-a, reflectance peak 

at 654 nm should not be used in reflectance band ratio algorithm to quantify 

cyanobacterial biomass. 
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Table 2.1 Descriptive statistics of pigment measurements in the four proximal sensing 
experiments.. 

Exp. Pigment Mean Std. Dev. Min Max n 

I PC (cells mL-1) 85529.82 75586.96 7050.00 247960.00 11 

Chl-a (µg L-1) 3.40 2.39 0.70 7.80 8 

II PC (cells mL-1) 50409.40 41727.17 506.00 126570.00 20 

Chl-a (µg L-1) 2.48 0.78 1.80 3.70 5 

III PC (cells mL-1) 118360.00 100771.72 4095.00 273883.00 12 

Chl-a (µg L-1) 13.32 7.12 2.10 21.90 12 

IV PC (cells mL-1) 94137.09 76424.23 4550.00 244500.00 11 

N refers to the total number of readings acquired. Chl-a data was not acquired in Exp. IV 
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Figure 2.1 Percent reflectance spectra of Synechocystis PCC 6803 from Exp I, II, III 
respectively (a, b, c).  

Percent reflectance spectra of Anabaena from Exp IV(d). 
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Figure 2.2 Percent reflectance spectra of Synechocystis and Anabaena showing 
appearance and dynamics of 650 nm peak at different Chl-a concentrations. 

 

Figure 2.3 Effect of varying green algae concentrations on (A) Synechocystis and  (B) 
Anabaena reflectance spectra. 
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CHAPTER III 

EMPIRICAL MODELS FOR REMOTE ESTIMATION OF CYANOBACTERIAL 

PHYCOCYANIN 

3.1 Overview 

Cyanobacterial harmful algal bloom (CHAB) is a major water quality and public 

health issue in inland and coastal environments as it can cause threats to aquatic life by 

producing various toxins and depleting dissolved oxygen concentrations, alter the food-

web dynamics and the overall ecosystem functioning (Mishra et al., 2009). From a 

commercial point of view, some species of cyanobacteria produce earthy/musty off-

flavoring compounds in farm-raised channel catfish ponds that reduce the demand of the 

production causing huge economic loss for the aquaculture industry. Frequent monitoring 

of water quality in a synoptic scale has been possible by the virtue of remote sensing 

techniques. In this research, in situ data were collected from several highly turbid and 

hyper-eutrophic aquaculture ponds in the southeastern United States including 

hyperspectral remote sensing reflectance (Rrs), chl-a ,chl-b, and Phycocyanin (PC) 

pigment concentrations. An empirical algorithm (Mishra et al., 2009), which was 

developed using laboratory cultured data to quantify cyanobacterial biomass, and a semi-

analytical algorithm (Simis et al., 2005) were validated by means of the measured field 

dataset. Error analysis showed that the semi-analytical algorithm produced the largest 

estimation error (mean RE=62% and median RE=56%) as compared to the empirical 
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models. Mean relative error of Rrs(708)/Rrs(600) and Rrs(708)/Rrs(620) models was 25.4 

and 21.6% respectively. The median relative error of Rrs(708)/Rrs(600) and 

Rrs(708)/Rrs(620) was  ~20% and 22%. Overall performance of both empirical models 

was similar to each other. 

3.2 Introduction 

Cyanobacteria are photosynthetic microorganisms commonly found in eutrophic 

inland lakes and reservoirs often dominating the phytoplankton community in summer 

months (Gibson and Smith, 1982). Cyanobacteria are the largest, most diverse group of 

prokaryotes that can multiply very rapidly in the summer when temperature, light, and 

nutrient runoff from fertilizers increase. Some of the genera of cyanobacteria produce 

various types of neurotoxins and hepatotoxins that adversely affect animals and humans 

(Carmichael, 1997; Iwasa et al., 2002; Ballot et al., 2003). Hence cyanobacteria detection 

and monitoring is critical in lake, coastal, and estuarine environments. Traditional 

sampling techniques for this process can be time-consuming and expensive, and real time 

spatial monitoring of cyanobacteria in large lakes, estuaries and coastal waters has been 

extremely difficult (Backer, 2002). Cyanobacteria have certain photosensitive pigments 

with distinct optical characteristics, allowing their detection and mapping by airborne and 

space-borne optical sensors.  

Cyanobacteria have photosynthetic reaction centers that are structurally and 

functionally similar to those found in eukaryotic chloroplasts, but their light-harvesting 

pigments are composed of Chlorophyll-a (chl-a) and the phycobiliproteins (PBP) 

(Golbeck and Bryant, 1991; Richardson, 1996). Cyanobacteria minimally contain at least 

three different spectrally detectable PBPs including phycocyanin (PC) (Amax=620 nm), 
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allophycocyanin (AP) (Amax=650 nm), and allophycocyanin B (APB) (Amax=670 nm) 

(Glazer, 1989; Richardson, 1996). Some cyanobacteria may also contain phycoerythrin 

(PE) (Amax=565 nm). These PBPs form a large protein complex which transfers energy 

primarily to Photosystem II reaction centers. Photosystem I reaction centers bind chl-a, 

the majority of which serve as antenna pigments for light absorption (Golbeck and 

Bryant, 1991). 

Hyperspectral remote sensing reflectance (Rrs) spectra for natural water bodies are 

generally complex because of the presence of many optically active constituents such as 

chl-a, carotenoids, total suspended solids (TSS), and Colored Dissolved Organic Matter 

(CDOM). However, researchers have been reasonably successful in exploiting PC 620 

nm absorption feature to develop empirical and semi-empirical models to detect PC as a 

marker for cyanobacteria from water bodies (Simis et al., 2005). Most research pertaining 

to the detection and mapping of cyanobacteria from in situ remote sensing spectra have 

used the absorption and reflectance features from 620 and 650 nm to develop a 

relationship between Rrs and PC concentrations. To date, three algorithms have been 

proposed to quantify PC based on its absorption feature at 620 nm: a single band ratio 

algorithm (Schalles and Yacobi, 2000), a semi-empirical algorithm (Dekker, 1993) and a 

nested semi-empirical band ratio algorithm (Simis et al., 2005). 

Dekker (1993) used an empirical baseline algorithm to quantify PC concentration 

from remote sensing reflectance while Schalles and Yacobi (2000) developed a 

reflectance band ratio model using maximum reflectance between 640 and 660 nm to 

minimum reflectance between 615 and 635 nm to detect PC. The major drawbacks of 

these empirical models are that they do not address the effect of chl-a concentrations on 



www.manaraa.com

 

28 

the estimation accuracy of the PC models (Simis et al., 2007). Although the reflectance 

peak between 640 and 660 nm has generally been used to develop empirical relationships 

to quantify PC, these empirical models for PC detection need narrower spectral resolution 

than is provided by commonly used ocean color satellite sensors (Kutser et al., 2006). In 

a separate study, Vincent et al. (2004) developed a spectral band ratio model to quantify 

PC concentrations using Landsat 7 ETM+ data and were successful in detecting and 

mapping PC in the western basin of Lake Erie. They used all bands of Landsat 7 sensor 

except the band 6 (thermal infrared) in the model including the near- and middle infrared 

bands (i.e., band 4:760-900 nm; band 5:1550-1750 nm; and band 7: 2080-2350 nm). 

However, radiance (Lw) in these infrared bands is greatly reduced due to water absorption 

and modeling reflectance spectra beyond 750 nm could be accounting for turbidity in the 

lake caused by algal biomass instead of phycocyanin (Kutser et al., 2006). Simis et al. 

(2005) developed a semi-empirical algorithm that used the band ratio from 709 nm to 620 

nm for PC estimation. They discussed the influence of chl-a absorption at 620 nm and 

also included the impact of the variable PC: chl-a ratio on the performance of the 

algorithm. They concluded that the model error significantly increased as the PC:chl-a 

ratio decreased, providing evidence for the effect of chl-a absorption at 620 nm. 

Simis et al. (2007) documented the influence of phytoplankton pigments other 

than chl-a on the remote estimation of cyanobacterial biomass. They concluded that the 

presence of chl-a, b and c, and pheophytin tend to overestimate the PC concentrations in 

predictive models, and that estimation errors tend to be significant at low PC 

concentrations. Therefore, even if a semi-empirical model to predict PC concentrations is 

corrected for chl-a, the absorption by the above mentioned pigments still influences the 
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620 nm band, affecting the accuracy of PC estimation. Randolph et al. (2008) validated 

the semi-analytical algorithm developed by Simis et al. (2005) and reported that the 

performance of the algorithm was promising in retrieving PC concentrations and 

estimating cyanobacteria abundance in Geist and Morse reservoirs, Indiana. However, 

further validation and fine-tuning of Simis et al. (2005) algorithm using spectroscopic 

studies was suggested.  

In this research, PC concentrations in cyanobacteria have been quantified using 

empirical (Mishra et al., 2009) and semi-analytical (Simis et al., 2005) approaches and 

performances of the algorithms have been compared using a field radiometric and 

pigment dataset collected from highly turbid and productive waters dominated by 

cyanobacteria. The specific objectives of this research include: (1) calibrating the 

algorithms using an in situ dataset and (2) validating the algorithms for assessing 

estimation accuracy.  In situ data were collected from Delta Research Extension Center 

aquaculture ponds, a Mississippi State University research facility located near 

Stoneville, MS, USA during 13-16 July, 2010 and 28-29 April, 2011. Average depth of 

aquaculture ponds is about 1.0 m with surface area ranging from 0.4-1.62 ha. Ponds do 

not have natural watersheds and solely depend on rain water and irrigation as their water 

source. The aquaculture ponds were selected for this study because of their eutrophic to 

hypereutrophic status (chl-a concentration exceeding 1000 mg m-3 in summer months) 

with cyanobacteria dominating the phytoplankton community during summer and 

occasionally during spring months (Tucker and Boyd, 1985). 
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3.3 Data and methods 

3.3.1 Pigment measurements 

3.3.1.1 Chlorophyll-a 

Water samples for chl-a and chl-b  analysis were simultaneously collected in 1L 

Niskin bottles and immediately filtered onto GF/F filters (Whatman, 0.7 µm pore size) 

under low vacuum (<5 inch of Mercury). Samples were extracted in triplicates using 90% 

acetone and concentrations were measured using HPLC following Environmental 

Protection Agency method 447 (Arar, 1997).   

3.3.1.2 Phycocyanin 

Water samples for PC analysis were filtered immediately after collection through 

a 0.2 μm nucleopore membrane filters (Milipore) under low vacuum. Filters were placed 

into a 15 mL falcon tube then frozen at -80oC until analysis. Prior to analysis, filters were 

transferred to a 50 mL polycarbonate centrifuge tube, allowed to reach ambient room 

temperature, and then suspended in 5 mL of 50 mM phosphate buffer. Samples were 

homogenized following Sarada et al. (2009) using a sonicator. The tip of the sonicator 

was rinsed twice with 5 mL of 50 mM phosphate buffer each time and collected in the 

centrifuge tube. Samples were centrifuged at 5o C, 27200 g for 25 minutes. Samples were 

again homogenized and the tip of the sonicator was rinsed with 5 mL of buffer and 

collected in the centrifuge tube and again centrifuged in the same settings. Finally, 

supernatant was collected and absorbance was measured using a Perkin Elmer lambda 

850 spectrophotometer. Concentration of PC was calculated using the equation from 

Bennett and Bogorad (1973).  
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3.3.2 Spectral measurements 

A dual sensor-system with two inter-calibrated Ocean Optics spectroradiometers 

was used to collect remote sensing reflectance data in the range 400-900 nm with a 

sampling interval of 0.3 nm following DallO’lmo et al. (2005). Radiometer 1, equipped 

with a 25° field-of-view optical fiber measured the sub-surface upwelling radiance just 

below the air-water interface, expressed in digital numbers as DNLu(λ); whereas 

radiometer 2, equipped with an optical fiber and cosine diffuser (yielding a hemispherical 

field of view) acquired above surface down welling irradiance, expressed in digital 

numbers as DNEd(λ). To match their transfer functions, inter-calibration of the 

radiometers was accomplished by measuring the upwelling radiance of a white 

Spectralon reflectance standard (Labsphere, Inc., North Sutton, NH) simultaneously with 

incident irradiance. The two radiometers were inter-calibrated immediately before and 

after measurements in each field site. After the data acquisition, Rrs was calculated as 

follows: 

 ,

,
 (3.1) 

Where, t is the transmittance at the air-water interface (0.98); n is the refractive 

index of water (1.34); DNLu,ref and DNEd,ref  are digital numbers representing upwelling 

radiance and downwelling irradiance over the white Spectralon panel; ρref is the 

irradiance reflectance of the Spectralon panel; Fi (λ) is the spectral immersion factor 

(Ohde and Siegel, 2003). For each station 6 consecutive scans were recorded and further 

averaged to calculate a representative Rrs(λ) spectrum (Fig. 3.1). 
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3.3.3 Phycocyanin algorithm 

3.3.3.1 Empirical PC algorithm 

Mishra et al. (2009) developed a reflectance band ratio algorithm to quantify 

phycocyanin in cyanobacteria using a dataset collected from laboratory experiments on 

cultured cyanobacteria. The desired band ratio required two wavelengths those that are 

maximally and minimally sensitive to PC concentration. Absorption spectra of chl-a, chl-

b, PC, PE, and xanthophylls show that pigment absorption significantly decrease after 

700 nm (Raven et al., 1976).  Therefore, 700 nm was selected as one spectral band with 

minimal sensitivity to PC and other pigments.  Similarly, another band at 600 nm was 

selected representing PC absorption. Although 617 nm is the location of PC absorption 

maximum, 600 nm was chosen to avoid the influence of chl-a absorption at 617 nm. 

Emerson and Lewis’s (1942) findings on the photosynthetic efficiency of PC in 

Chroococcus, a cyanobacterium, shows that the total absorption of light by pigments at 

600 nm is because of 89% absorption by PC and 11% absorption by chlorophylls, 

whereas at 617 nm, the chlorophyll absorption increases to approximately 18%.  

Therefore 600 nm was selected as the second band with maximum sensitivity to change 

in PC concentration. Mishra et al. (2009) used Rrs(700)/Rrs(600) as the reflectance band 

ratio on the assumption that it is most sensitive to a change in PC concentration and the 

least sensitive to change in any other pigment concentration. However, in hypereutropic 

waters, 700 nm could be contaminated by chl-a fluorescence, and pigment absorption at 

this band center could still be significant (Mishra et al., 2012). Therefore, in this study 

708 nm was selected instead of 700 nm for the band ratio. Rrs(620)  was also used 

because of the availability of this band in Medium Resolution Imaging Spectrometer 
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(MERIS) sensor, to form another band ratio Rrs(708)/ Rrs(620) to retrieve PC in 

cyanobacteria dominated waters. 

3.3.3.2 Semi-analytical algorithm 

Simis et al. (2005) developed a semi-analytical algorithm to retrieve 

cyanobacterial PC concentration in highly turbid and productive waters. Salient features 

of the algorithm are as follows. Remote sensing reflectance just below the air-water 

interface, Rrs(0
-,λ), can be related to the inherent optical properties of the water such as 

absorption coefficient (a), back scattering coefficient (bb) through a factor f that is 

dependent on the light field geometry (Morel and Gentili,1993). Based on Gordon et al. 

(1975) widely accepted relation, inherent optical properties and apparent optical 

properties can be related by the following relation.  

 						 0 , λ  (3.2) 

Where, f is a scaling factor dependent on the light field geometry and volume 

scattering function (Morel and Gentili, 1993). a(λ)and bb(λ) are total absorption and total 

back scattering coefficients. Considering Rrs at another wavelength, where, a(λ) and bb(λ) 

is known or at least they can be approximated, and a(λ) at one wavelength can be solved 

analytically. Therefore, absorption by chl-a and PC can be analytically estimated from 

two Rrs bands and by solving two equations generated from Eq. 3.2. In this case, three 

assumptions have been made including 1) a(620) is the sum of absorption by chl-a, PC, 

and water, 2) a(665) is primarily because of chl-a and water absorption, and 3) a(708) is 

only because of water absorption. In addition, this algorithm assumes that bb(λ) is 

spectrally neutral and it can be estimated from Rrs at a NIR wavelength, Rrs(779).  
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Based on the assumptions, Rrs(665) and Rrs(708) can be used to retrieve chl-a 

absorption. Similarly Rrs(620) and Rrs(708) can be used to retrieve a sum of chl-a and PC 

absorption. Further, absorption by PC at 620 nm can be estimated by subtracting chl-a 

absorption at 620 nm from the combined absorption by chl-a and PC at 620 nm. 

Analytical equation to retrieve chl-a and PC absorption are provided below. 

 665 	 708 665 	  (3.3) 

Similarly absorption by PC at 620 nm can be written as: 

 620 	 708 620 	 665 (3.4) 

Where, the model coefficients γ and δ empirically relates the model retrieved 

phytoplankton absorption at 665nm and 620 nm to the pad-measured ones; whereas, ε 

relates the chl-a absorption at 620 nm and 665 nm. The backscattering coefficient, bb(λ) 

can be estimated as (Gordon et al., 1988; Gons,1999): 

 	
.

, (3.5) 

where, α accounts for refraction at the water surface (=0.68), and the factor 0.82 accounts 

for the average cosine of downward irradiance (Gordon et al., 1988). 

3.4 Results and discussions 

3.4.1 Water quality 

Summary of the measured pigment concentrations is presented in Table 3.1. 

Pigment concentration showed a wide variation in the entire dataset. PC concentration 

varied from 68.13 to 3032.47 mg m-3 with an average of 418.76 mg m-3. Chl-a 
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concentration varied within 59.4-1376.6 mg m-3 with an average of 302.06 mg m-3. Out 

of 25 samples, Chl-b concentration was below the detection limit of the instrument in 7 

samples in the 2010 dataset. In the remaining samples, chl-b values varied within 1.56-

13.71 mg m-3. The average value of chl-b (4.35 mg m-3) was lower than the standard 

deviation of chl-a replicates; which implies that  chl-b values are within the uncertainty 

range of chl-a and therefore effect of chl-b on the remote estimation of PC should be 

negligible or minimal. Timing of our field sampling coincided with the peak of the 

summer bloom period in 2010 and the early bloom period in 2011. Therefore, the average 

chl-a concentration in 2010 and 2011 was ~833 and 185 mg m-3. Similarly, the average 

PC concentration in 2010 and 2011 was ~570 and 142 mg m-3. PC: chl-a ratio varied 

within 0.3-3.29 (mean=1.23) indicating cyanobacterial dominance in the phytoplankton 

community structure (Table 3.1). These values are in the similar range of previously 

reported values from the Morse and the Geist reservoir, IN, USA (Randolph et al., 2008) 

and lakes and reservoirs from Spain and Netherlands (Simis et al., 2005; Ruiz-Verdu et 

al., 2008). Strong dependence was found between chl-a and PC concentration in the 

entire dataset (r=0.91). Similarly, a strong positive correlation was found between chl-a 

and chl-b (r=0.79). 

3.4.2 Empirical PC algorithm 

Empirical PC algorithm was calibrated using least-square regression between the 

measured PC concentration and the reflectance band ratios, Rrs(708)/Rrs(600) and 

(708)/Rrs(620). The dataset was randomly divided into two subsets, one for model 

calibration (n=16) and another for model validation (n=9). Regression analysis was 

performed on log-transformed PC concentration and reflectance band ratios. As shown in 
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Fig. 3.2a, Rrs(708)/Rrs(600) ratio showed a linear relationship with PC concentration 

producing an R2 of 0.77 and standard error of the estimate (STE) of 0.23.  Similarly, 

Rrs(708)/Rrs(620) also showed a linear relationship with measured PC concentration in 

the same dataset producing a STE of 0.204 and R2 of 0.82. Further, empirically developed 

PC models were validated for accuracy assessment by applying them on the independent 

validation dataset. PC concentrations in the validation dataset were retrieved using the 

empirical equations and compared with measured PC values (Fig. 3.3a). Model errors 

were expressed as relative errors (RE): 

 	 % 100, (3.6) 

where, PCref and PCmodel are measured and model retrieved PC concentration. For samples 

with high PC concentration (PC>200 mg m-3), PC retrievals by Rrs(708)/Rrs(600) model  

were close to the measured values. The maximum and minimum relative error of PC 

retrieval was -8% (over prediction) and -43% (over prediction); whereas, the average and 

median relative error were -8.73% and -16.6% respectively. Similarly, average and 

median relative error of the Rrs(708)/Rrs(620) model were -3.31% and -16.63%. In both 

cases, median relative errors (~16%) show that performance of both models was very 

similar (Table 3.2, Fig 3a). Regression between measured PC and model retrieved PC 

produced high R2 for both models (=0.99). Linear regression coefficient, slope of the 

best-fit line, was found to be 1.17 and 1.22 and intercepts were -14.7 and -45.2 for 

Rrs(708)/Rrs(600) and Rrs(708)/Rrs(620) respectively. Ruiz-Verdu et al. (2008) have 

validated the three basic types of existing PC algorithm using an extensive dataset and 

reported that single reflectance ratio (Schalles and Yacobi, 2000) and the empirical 
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baseline algorithm (Dekker, 1993) produced 36.4 and 20.9% of negative predictions of 

PC. In contrast, because of the log-transformation of dependent and independent 

variables before regression, models don’t produce any negative predictions in this study. 

Analysis of relative error shows that maximum errors occurred with the samples 

with PC concentration less than ~200mg m-3. Both of the models produced similar 

relative error for all samples excluding two. Relative error was less than 25% for samples 

with PC concentration within the range of 203-1881 mg m-3(Fig. 3.3b). Model errors did 

not show any trend with PC: chl-a ratio. Unlike findings from semi-analytical PC model 

(Simis et al., 2005) relative errors did not increase with a decrease in PC: chl-a ratio (Fig. 

3.3c). 

3.4.3 Semi-analytical PC algorithm 

Semi-analytical algorithm was used to retrieve aPC(620) from Rrs data and PC 

concentrations were estimated by using ∗ 620 . Simis et al. (2005) optimized the 

model parameters (γ=0.68, δ=0.84, and ε=0.24) using a dataset collected from lakes in 

Netherland. In this study, same values of model parameters γ and δ produced severe 

underestimation of aφ(620) and aφ(665). The values reported by Simis et al. (2005) did 

not hold true in our dataset because of optically different waters in our study area. 

Therefore, values of γ and δ for our dataset were estimated by least-square regression 

technique (Fig. 3.4). The new values of γ and δ were found to be 0.5 and 0.67 and used in 

the model. The mean value of ∗ 620  for various lakes in Spain and Netherland 

(=0.007 m2 mg-1 of PC) and ε reported by Simis et al. (2006) were used to retrieve PC. 

Further, model retrieved PC concentrations were compared with measured PC values for 

accuracy assessment. The mean relative error of model estimation was 73%, whereas, the 
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median error was ~46%.  Simis et al. (2005) documented that their PC model error 

significantly increased with a decrease in PC:chl-a ratio which is consistent with our 

observation. Maximum error occurred for the samples with PC concentration < 200 mg 

m-3 and a PC:chl-a ratio of <1 (Fig. 3. 5).  

To understand the sources of error, model derived aPC(620) values were 

comparing with spectrophotometrically measured aPC(620) values. As shown in Fig. 3.6, 

model retrieved aPC(620) values of all samples, excluding one, were overestimated (Fig. 

3.6). Least-square regression analysis showed a strong linear relation between the 

modeled and measured values (R2=0.84, p<0.0001) but produced an intercept value of 

0.99 (significantly more than the ideal, 0). This could be interpreted as systematic 

overestimation of retrieved values either because of: 1) absorption by accessory pigments 

other than chl-a and colored dissolved and detrital matter at 620 nm, or 2) use of a 

smaller value for the parameter ε while correcting for chl-a contribution. Simis et al. 

(2005) reported that the presence of chl-b could overestimate aPC(620) absorption and 

eventually contribute to the model error. In this dataset, the pigment concentration is 

predominantly dominated by chl-a and PC. Out of 25 samples, chl-b concentration was 

below the detection limit in 7 samples. In addition, average chl-b concentration in this 

dataset is just 1.47% of the average chl-a concentration and ~0.6% of the average chl-a 

and PC concentration combined. Therefore, effect of accessory pigment absorption on the 

overestimation of aPC(620) may be considered negligible at least in this dataset. The next 

possible reason behind the overestimation of aPC(620) could be from the model parameter 

ε. In this study, ε was used as a constant with a value of 0.24 as reported in Simis et al. 

(2005). However, it is known that ε could vary among different species of phytoplankton 
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functional types, degree of diversity in phytoplankton community, as well as pigment 

packaging. The value of ε increases when the dominant phytoplankton community 

changes from cyanobacteria to green algae. Also in case of pigment packaging, 

∗ 665  decreases with the degree of packaging and produces a ε value>0.24 (Simis et 

al., 2005). In this study, the values of ε are not known and hence it is not possible to 

investigate its effect further. However, it can be generalized that the overestimation could 

have come from using a smaller value for ε that causes inefficient correction of chl-a 

absorption at 620 nm. 

Another important source of model estimation error could be from the use of 

inaccurate ∗ 620 . In this study, an average value of ∗ 620  (=0.007 m2 mg-1 of 

PC) reported from the lakes in Spain and Netherland (Ruiz-Verdu et al., 2008) was used 

to retrieve PC concentration. However, ∗ 620  considerably varies within a wide 

range because of change in environmental and light conditions. ∗ 665  significantly 

varies because of cell morphology and photo adaptation (Sathyendranath et al., 1987; 

Bricaud et al., 1995). Similar reasons may cause variability in ∗ 620  as well. 

Therefore, use of a fixed ∗ 620  value will cause considerable inaccurate PC retrievals 

in the final step.  

It is also believed that that the biggest challenge of the semi-analytical algorithm 

is to find out the appropriate model parameters when applied in a new geographic region. 

Model parameters γ and δ play a critical role to retrieve aφ(665) and aφ(620) from Rrs(λ). 

Values of γ and δ optimized in a particular water type cannot be used in other waters with 

different optical conditions. For example, optimized values of γ and δ in lakes from 

Netherland decreased 26.4 and 20.2% in our study region because of different optical 
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conditions. Values of γ and δ could also be affected by uncertainties caused from the 

model assumptions/simplifications such as: 1) pigment absorption at 708 nm is 

negligible, and 2) bb(λ) spectrum is spectrally neutral. It should be noted that in hyper-

eutrophic waters such as our study region, pigment absorption at 708 nm is still 

considerable and in many cases total absorption at 708 nm is dominated by pigment 

absorption. Average pigment absorption at 708 nm was about 48% of the average total 

absorption at that wavelength (Mishra et al., 2012). Therefore, the first assumption does 

not hold true in this study and produce an erroneous aφ(620) and aφ(665). Similarly, 

assumption of spectral neutrality of bb(λ) spectrum might fail in waters with high mineral 

content. If this simplification is not considered, Eqs. 3.3 and 3.4 will have a 

multiplication factor, bb(665)/bb(709) and bb(620)/bb(709), and spectrally neutral bb will 

be replaced by bb(665) and bb(620). Although this cannot be investigated further due to 

lack of bb(λ) data to investigate this further, a simple analysis shows that for a given 

bb(779), if a standard bb(λ) model is considered (Gorden and Morel, 1983),  

bb(665)/bb(709) and bb(620)/ bb(709) may vary from 1 to 1.13 and 1 to 1.3 respectively 

for a spectral power (η) varying between 0 to 2. Similarly, if the spectrally neutral bb 

value is used (as in Eqs. 3.3 and 3.4) in place of bb(665) and bb(620), it will 

underestimate the bb(665) and bb(620) within a range of 0 to 27% and 0 to 36% for a 

spectral power (η) varying between 0 to 2. As the parameters γ and δ address all these 

uncertainties such as proportion of pigment absorption in the total absorption budget and 

errors from assumptions, values of these model parameters cannot be approximated as 

constants and should only be used with caution.  
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3.5 Conclusions 

In this research both empirical and semi-analytical approach was used to quantify 

phycocyanin concentration in cyanobacteria. Two reflectance band ratios such as 

Rrs(708)/Rrs(600) and Rrs(708)/Rrs(620) were used to retrieve PC concentration using 

least-square regression. Model parameters γ and δ in the semi-analytical algorithm (Simis 

et al., 2005) were optimized for our study region and used in the present study. 

Performances of all three models were analyzed by comparing estimation errors of the 

common samples (samples used in the empirical model validation). Results showed that 

the semi-analytical algorithm produced the highest estimation error among all (mean 

RE=62% and median RE=56%) (Fig.3.7). It should be noted that γ and δ should not be 

used as constants and transferred to other study regions as in Randolph et al. (2008) and 

Hunter et al. (2010) as they depend on the optical conditions of the water body as well as 

the validity of assumptions or simplifications of the algorithm.  

Despite the simplicity, empirical models performed better than the semi-analytical 

model. Mean relative error of Rrs(708)/Rrs(600) and Rrs(708)/Rrs(620) model was 25.4% 

and 21.6% respectively. However, the median relative error of Rrs(708)/Rrs(600) (~20%) 

was 2% lower than the Rrs(708)/Rrs(620) model. As ∗ 620  is greater than ∗ 600 , 

Mishra et al. (2009) suggested to use 600 nm instead of 620 nm in the reflectance band 

ratio to reduce the effect of chl-a dependence of the empirical model. However in this 

study, use of Rrs(708)/Rrs(600) band ratio did not outperform Rrs(708)/Rrs(600) rather the 

overall performance of both models was somewhat similar to each other. Even though the 

reason is not evident, it is assumed that this could be explained by pigment packaging 

effect. Samples were collected during algal bloom periods when the algal density as well 
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as the intracellular pigment concentration was very high. In this scenario, difference 

between ∗ 620  and ∗ 600  is possibly insignificant and therefore, Rrs(600) and 

Rrs(620) in the reflectance band ratio produces similar results in the final output. Because 

of lack of sufficient data, it has not been studied how the empirical models will perform 

in a study area with mixed phytoplankton community structure or when cyanobacteria co-

occur with green algae and dominate the phytoplankton community. Model comparison 

and validation analysis was performed on a small dataset collected during two different 

season of the year 2010 and 2011. In the future, a large dataset should be used for 

comparison of model performance and accuracy assessment.  

Table 3.1 Descriptive statistics of pigment and absorption coefficient measurements. 

Parameters 
Mean Std Min Max N 

Pigment Concentrations 
PC (ug/L) 418.76 669.75 68.13 3032.47 25 
Chl-a (µg l-1) 295.96 302.06 59.40 1376.60 25 
Chl-b (µg l-1) 4.36 3.15 1.57 13.71 18 
PC:Chl-a 1.23 0.73 0.30 3.29 25 
 

Table 3.2 Model Parameters from regression analysis and results from the model 
validation: slope (a) and Intercept (b), coefficient of determination (R2); 
adjusted coefficient of determination; standard errors of the estimates (STE) 
for both models are 

 

Calibration (n=16) Validation (n=9) 

Indices a b R2 Adj. R2 STE p Mean RE (%) Median RE(%) 

Rrs(708)/Rrs(600) 2.78 1.44 0.77 0.75 0.23 <0.0001 -8.73 -16.60 

Rrs(708)/Rrs(620) 2.34 1.39 0.82 0.8 0.204 <0.0001 -3.31 -16.73 
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Figure 3.1 Remote sensing reflectance, Rrs(sr-1) measured at study sites. 

 

Figure 3.2 Calibration of empirical PC algorithm using (a) Rrs(708)/Rrs(600) and (b) 
Rrs(708)/ Rrs(620) ratios.  

Regression results are provided in Table 3.2. 
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Figure 3.3  (a) Comparison of model retrieved PC concentration with measured 
values.  

Solid line is the 1:1 line, (b) Scatter plot between relative error (%) and measured PC 
concentration, and (c) Scatter plot between relative error (%) and PC: chl-a pigment ratio. 
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Figure 3.4 Relationship between pad-measured aφ(665,620) (x axis) and model 
retrieved uncorrected aφ(665, 620) (y axis).  

Solid black and gray lines are the best-fit lines with regression equations- aφ(665):  y = 
0.678x - 0.5129, R2=0.92, aφ(665): y = 0.4989x + 0.0155, R2=0.85. 
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Figure 3.5  Validation of retrieved PC values from semi-analytical algorithm  

(a) comparison of modeled PC values with measured ones. Solid line is the 1:1 line,  
(b) Scatter plot between Relative error, (RE)(%) and measured PC concentration, and (c) 
scatter plot between relative error, (RE)(%) and PC: chl-a pigment ratio. 
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Figure 3.6 Comparison of aPC(620) with spectrophotometrically measured values.  

Solid line is the 1:1 line and the dashed line is the least-square fit line. Sample 
represented with a filled circle was excluded from regression analysis. 

 

Figure 3.7  (a) Comparison of model estimation error from the semi-analytical and 
empirical models, and (b) scatter plot between RE(%) and PC: chl-a ratio.  

Solid black, empty, and solid gray circles represent the semi-analytical algorithm, 
Rrs(708)/Rrs(600), and Rrs(708)/Rrs(620) empirical models. Note that relative errors are 
high for samples with PC:chl-a ratio of about less than 1.5. 
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CHAPTER IV 

A QUASI-ANALYTICAL ALGORITHM TO QUANTIFY CYANOBACTERIAL 

PHYCOCYANIN: MODEL PARAMATERIZATION 

4.1 Overview 

Phytoplankton pigment absorption data from algal bloom dominated waters is 

highly desirable to better understand the primary productivity and carbon uptake by algal 

biomass at a regional scale. However, retrieving phytoplankton pigment absorption 

coefficients, in turbid and hyper-eutrophic waters, from remote sensing reflectance is 

often challenging because of the optical complexity of the water body. In this paper, a 

quasi analytical algorithm (QAA) has been parameterized using in situ data to retrieve 

inherent optical properties from above surface remote sensing reflectance in highly turbid 

and cyanobacteria dominated aquaculture ponds. New empirical relationships were 

developed to retrieve absorption by colored detrital matter in order to decompose the total 

absorption coefficient to derive phytoplankton absorption coefficient. The model was 

validated using a separate dataset by comparing the model derived optical parameters 

with in situ measured values. Percentage error of the estimated total absorption 

coefficient, at(λ), values varied from 15.22-24.13 % within 413-665 nm and the average 

error was 19.87%. Maximum and minimum error occurred at 443 and 665 nm 

respectively. Similarly percentage error for phytoplankton absorption coefficient, aφ(λ), 

varied from 16.94-34.15 % within 413-665 nm range and the average error was 23.93%. 
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Spectral shape of modeled aφ(λ) matched very well with the measured aφ(λ) spectral 

shape. In this current form, it can be applied to retrieve aφ(λ) in turbid productive waters 

as well as cyanobacterial algal bloom (CAB) dominated waters in inland lakes, coastal 

estuarine environments, and marginal seas using MERIS and other hyperspecral sensors. 

4.2 Introduction 

Phytoplankton pigment concentration is often considered as a proxy for algal 

biomass and an indicator of ecological health of inland, coastal, and open ocean pelagic 

waters. Phytoplankters are responsible for half of the global primary productivity 

(Falkowski et al., 2004; Field et al., 1998), therefore, a better understanding of their 

phenology is essential to study the global carbon cycle and its effect on changing climate 

(Brewin et al., 2010). Ocean color remote sensing offers great potential for quantifying 

phytoplankton biomass and primary productivity in global ocean. There exist a large 

number of methods and algorithms of empirical and semi-analytical nature for remote 

estimation of phytoplankton pigment concentration using ocean color data (Gordon and 

Morel, 1983; Morel and Prieur, 1977; O'Reilly et al., 1998; Gons et al., 2000; Maritorena 

et al., 2002). Empirical algorithms normally rely on statistical relationship between band 

ratios of reflectance and bio-optical parameters. Therefore, these algorithms often 

produce accurate retrievals if the concentration range and proportion of optically active 

constituents are similar or close to the ones used in the calibration dataset.  

In contrast, semi-analytical algorithms (Gordon et al., 1988; Roesler and Perry, 

1995; Garver and Siegel, 1997; Carder et al., 1999; Maritorena et al., 2002) are based on 

the inversion of optical properties of water using radiative transfer models, where, Rrs(λ) 

(abbreviations are in Table 1) is linked with absorption and scattering budget of light by 
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optically active constituents and water itself. Semi-analytical algorithms are 

comparatively more robust than empirical algorithms and can retrieve optical parameters 

accurately given that the inputs, such as the spectral shape of phytoplankton absorption 

coefficient and the spectral slope of gelbstoff absorption, are accurate. These input 

parameters are often pragmatically assumed to be the global mean (e.g., Maritorena et al., 

2002); if the local values significantly deviate from the global mean, the accuracy of the 

model retrieval reduces accordingly.  

To address this issue, Lee et al. (2002) developed a multiband quasi-analytical 

algorithm to retrieve absorption and backscattering coefficients from Rrs(λ) in optically 

deep waters. The advantage and uniqueness of this algorithm is that, unlike other semi-

analytical algorithms, it does not require spectral models of the absorption coefficient of 

phytoplankton, non-algal particulates (NAP) and colored dissolved organic matter 

(CDOM) for the derivation of total absorption coefficient, at(λ). In addition, other semi-

analytical models derive component contributions first, and then estimate at(λ); while 

QAA derives at(λ)  first, then estimates the contributions of components to the absorption 

budget. The model has been extensively validated using simulated and field datasets from 

different geographic regions (Lee et al., 2002; Lee et al., 2004; Le et al., 2009, Craig et 

al., 2006; Zhu et al., 2010). In brief, the algorithm empirically estimates at at a reference 

wavelength (λ0), where, the at(λ0) is dominated by aw(λ0) then it estimates particulate 

back-scattering coefficient at a reference wavelength, bbp(λ0), by using relationships 

between rrs(λ) and IOPs derived from radiative transfer equations. Further, it estimates 

bbp(λ) and then at(λ) spectrum from measured Rrs(λ). The derived at(λ) is further 

decomposed into aφ(λ) and aCDM(λ) taking advantage of the exponential function of 
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aCDM(λ) spectrum, which can be modeled from rrs(λ ). Le et al. (2009) recently used this 

algorithm to retrieve at(λ) in highly turbid waters of Meiliang Bay in Taihu Lake, China 

and reported that the algorithm successfully retrieved at(λ) with a difference of less than 

20% between the measured and modeled data.  at(λ) spectrum was not further 

decomposed in that study and therefore the accuracy of aφ(λ)  retrieval cannot be 

investigated.  

Further assessment of the QAA performance was carried out in this study by 

using a dataset with very high chlorophyll-a (chl-a) concentration (up to 1376 mg m-3) 

and extremely high at(443)(47.21 m-1) that were acquired from turbid and eutrophic 

waters, such as aquaculture ponds in Stoneville, MS. Upon application of the QAA to the 

Rrs data to retrieve at(λ), the model underestimated the at(λ) values up to a factor of 5-10 

at all wavelengths within 400-700 nm range (Fig. 1a). This underestimation can be 

explained by the inaccurate retrieval of at at the reference wavelength, 560 nm. In 

addition, existing steps to separate aCDM(λ) from at(λ) to retrieve aφ(λ)  produced many 

negative retrievals of aCDM(λ). Similarly, the model retrieved aφ(λ) values with twofold 

underestimation as compared to the pad-measured values (Fig 2a and 2b). QAA in the 

native form is able to retrieve at(λ) and aφ(λ) successfully in waters where at(443) is less 

than ~0.5 m-1. However, the empirical scheme to retrieve the at(λo) at a reference 

wavelength located around 700 nm needs to be parameterized, instead of simply using the 

value of pure water (Doron et al., 2007), for successful retrieval of at(λ) and aφ(λ) in 

turbid and productive waters and algal bloom dominated waters with at(443) value often 

exceeding 0.5 m-1. 
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The main objective of this research was to parameterize the QAA algorithm for 

accurate retrieval of aφ(λ) in highly turbid and productive waters. The specific objectives 

are: (1) parameterize the QAA algorithm using in situ bio-optical dataset collected from 

several inland ponds with highly turbid and productive waters; (2) validate the algorithm 

using an independent dataset collected from the same area in a different year; and (3) 

evaluate the accuracy of the retrieval by comparing the model derived aφ(λ) with pad-

measured aφ(λ) values.  

4.3 Data and methods 

In situ data were collected from aquaculture ponds at Delta Research Extension 

Center, Mississippi State University research facility located near Stoneville, MS, USA 

during multiple field campaigns in 2010 (13-16 July) and 2011 (28-29 April). Depth of 

the ponds varied from 1.2-1.8 meters and the area ranged from 4-8 ha. The pond 

management practices in Mississippi include a high feeding rate, which results in a very 

high concentration of nitrogen and phosphorous (Tucker and Boyd, 1985). High 

concentrations of nutrients (mean nitrite concentration = 0.12 mg L-1 and mean total 

ammonia concentration = 0.48 mg L-1) (Tucker et al., 2009) along with high temperature 

and intense sunlight cause the development of phytoplankton blooms in these 

impoundments during summer months. Chl-a concentration goes up to as high as 1000 

mg m-3 and cyanobacteria are the abundant species of phytoplankton during these 

summer blooms (Tucker and Boyd, 1985). Impoundments are typically turbid because of 

wind induced re-suspension of minerals and clay particles in the water column. 
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4.3.1 Remote sensing reflectance (Rrs) 

Hyperspectral Rrs data were collected using two calibrated Ocean Optics 

spectroradiometer (Ocean Optics Inc., Dunedin, FL, USA) as given in Dall’Olmo et al. 

(2005). The dual-fiber system, with two inter-calibrated Ocean Optics radiometers 

mounted on a platform, acquired reflectance data in the range of 400-900 nm with a 

sampling interval of 0.3 nm. One radiometer, equipped with a 25° field-of-view optical 

fiber pointed downward to measure the upwelling radiance just below the air-water 

interface, expressed in digital numbers as DNLu(λ); while the second radiometer, equipped 

with an optical fiber and cosine diffuser (yielding a hemispherical field of view), pointed 

upward to acquire above surface downwelling irradiance just above the surface , 

expressed in digital numbers as DNEd(λ). To match their transfer functions, inter-

calibration of the radiometers was accomplished by measuring the upwelling radiance of 

a white Spectralon reflectance standard (Labsphere, Inc., North Sutton, NH, USA) 

simultaneously with incident irradiance. To mitigate the impact of solar elevation on 

radiometer inter-calibration, the anisotropic reflectance from the calibration target was 

corrected in accordance with Jackson et al. (1992). The two radiometers were inter-

calibrated immediately before and after measurements in each field site. After the data 

acquisition, Rrs(λ)  was calculated as follow: 

 ,

,
 (4.1) 

where, t is the transmittance at the air-water interface (0.98); n is the refractive index of 

water (1.34); DNLu,ref and DNEd,ref  are digital numbers representing upwelling radiance 

and downwelling irradiance over the white Spectralon panel; ρref is the irradiance 
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reflectance of the Spectralon panel; Fi (λ) is the spectral immersion coefficient (Ohde and 

Siegel, 2003). For each station, a representative Rrs(λ) spectrum was calculated by 

averaging six consecutive scanned spectra (Fig. 3). 

4.3.2 Absorption measurements-ad(λ), aφ(λ), and aCDOM(λ) 

Surface water samples were collected in 1 L Niskin bottles and immediately 

filtered onto 0.7 μm Whatman GF/F filters under low vacuum (<5 inch of mercury). The 

volume of water filtered varied from 50-100 mL depending on the load of particulate 

matter in the sample. Particulate absorption coefficient, ap(λ), was determined using 

standard quantitative filtration technique (QFT) procedure as described in Fargion and 

Muller (2000). A Perkin Elmer lambda-850 spectrophotometer (Perkin Elmer Inc., 

Waltham, MA, USA) with an integrating sphere was used to scan the samples within a 

spectral range from 400 to 800 nm. Absorption coefficient of detrital matter, ad(λ), was 

measured after bleaching the filters in 0.2% active chlorine aqueous solutions to remove 

the phytoplankton pigments (Tassan and Ferrari, 1995). ap(λ) and ad(λ)  were calculated 

after correction for optical path-length elongation due to multiple scattering using a ‘β 

factor’ for highly turbid and productive waters as in Dall’Olmo (2006). Further, aφ(λ) was 

computed by subtracting ad(λ) from ap(λ). Finally, aφ(λ) was corrected for residual 

scattering by subtracting aφ(800) from all wavelengths. 

Water samples for colored dissolved organic matter (CDOM) analysis were 

filtered immediately after collection through a 0.2 μm nucleopore membrane filters under 

low vacuum. Filtered samples were stored at 4oC in amber color glass bottles untill 

analysis. Filtered samples were allowed to reach ambient room temperature to minimize 

temperature bias between samples and blank (Milli-Q water) before absorption 
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measurements. Absorbance, ACDOM(λ), of discrete samples were measured using the high 

performance Perkin Elmer Lambda 850 spectrophotometer within 350 and 850 nm range 

with 1 nm spectral resolution. The absorbance data were corrected for baseline 

fluctuations by subtracting the mean value between 780 and 784 nm from the absorbance 

measured at each wavelength. The specified wavelength was chosen for baseline 

correction because aCDOM(782) is negligible and it is minimally affected by temperature 

dependent variations in water absorption (Buiteveld et al., 1994).  aCDOM(λ) (m-1) for 

path-length, l (m) was calculated as: 

 λ .
 (4.2) 

4.3.3 Water quality parameters 

Water samples for chl-a and chl-b  analysis were collected in 1 L Niskin bottles 

and immediately filtered onto GF/F filters (Whatman, 0.7 µm pore size) under low 

vacuum (<5 inches of mercury). Chl-a and chl-b were extracted in triplicates using 

acetone extraction procedure and concentrations were measured using HPLC as in 

Environmental Protection Agency (EPA) method 447 (Arar, 1997). Only for the 2010 

data set, the concentrations of total suspended solids (TSS), organic suspended solids 

(OSS), and inorganic suspended solids (ISS) were measured gravimetrically (ASTM, 

1999).  

4.3.4 Accuracy assessment methods 

The inversion model was parameterized using the data set collected in July 2010 

and the performance of the model was evaluated using an independent data set collected 

in April 2011. Model derived aCDM(λ) and aφ(λ) were compared with pad-measured 
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aCDM(λ) and aφ(λ) and the percentage error (ε) was calculated for all samples to access the 

accuracy of the inversion method (Lee et al., 2002). 

 
∑

/

 (4.3) 

Linear percentage error: 

 10 1 100%, (4.4) 

where, q represents optical parameters such as at(λ), aCDM(λ),  and aφ(λ); and the 

superscripts “model” and “measure” represent model derived and laboratory measured 

parameters respectively. In addition, the root mean square error (RMSE) and slope, 

intercept, and R2 of regression relations between measured and modeled parameters were 

also used to access the accuracy whenever needed. 

4.4 Parameterization of the QAA inversion algorithm 

4.4.1 Derivation of total absorption coefficients, at(λ) 

One of our main objectives of our research was to reparameterize the QAA 

algorithm to make it suitable to work particularly in highly absorbing waters and algal 

bloom scenarios in inland ponds, lakes, and coastal and estuarine environments, where, 

chl-a concentration reaches as high as 1000 mg m-3. As discussed earlier, QAA algorithm 

with reference wavelength at 560 nm underestimated at(λ) values in our study area up to a 

factor of 5-10 at all wavelengths within 400-700 nm range (Fig. 1a). This 

underestimation can be explained by the inaccurate retrieval of at at the reference 

wavelength, 560 nm.  In the entire dataset at(560) varied from 1.14 to 10.38 m-1, which is 

a factor of 18-167 of aw(560) value. At 560 nm, the total absorption budget is dominated 
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by non-water absorbing constituents that make the empirical estimation of at(560) 

unreliable. An underestimated at(560) value causes an underestimation of bbp(560) and 

propagates the error to at estimation at other wavelengths. Lee et al. (2002) shifted the 

reference wavelength to 640 nm for accurate retrieval of at(λ) in strongly absorbing 

(eutrophic) waters (at(440)>0.3 m-1). In studies (e.g. Doron et al., 2007; Le et al., 2009) 

the reference wavelength was shifted to 708 nm and at(708) was assumed equal to 

aw(708), and at(λ) were successfully retrieved with an average percentage difference of 

less than 15% between the measured and predicted at(λ) values. However, retrieval 

accuracy did not improve drastically when the reference wavelength was moved to 708 

nm in this dataset. The model still underestimated at(λ) values up to about two fold at all 

wavelengths (Fig. 1b). This is because of the fact that in this present scenario, at(708) 

values range from 1.06-4.1 m-1 which is a factor of 1.28-4.95 of aw(708) values in the 

entire dataset. Therefore, at(708) cannot be assumed to be pure water absorption 

coefficient at 708 nm in highly eutrophic waters. Attempts were made to find an 

empirical relationship between χ formulated in the Lee et al. (2002) and at(708); 

however, the output was not satisfactory. I formulated χ using rrs(λ) data at 443, 620, and 

708 nm from the current dataset. The mathematical formulation of χ is expressed as: 

 
. ∗

. ∗ ∗
 (4.5) 
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4.5 Results and discussions 

4.5.1 Water quality parameters 

The aquaculture ponds were highly turbid and productive during the sampling 

time with an average chl-a of 532 µg l-1 and average TSS of 177 mg l-1 in the dataset 

collected in 2010. The proportions of suspended solids in those waters were equally 

dominated by minerals and organic particles.  ISS/TSS ratio varied from 16-68% 

indicating the water to be highly turbid and similarly high value of OSS/TSS (32-84%) 

indicates their organic origin (Table 3). In general, TSS values were positively correlated 

with that of chl-a (R2=0.23), which corroborates that the algal biomass contributed 

towards the TSS concentrations in the impoundments. TSS and ISS showed a strong 

positive correlation indicating minerals and clay particles as a primary source of TSS 

(R2=0.93, p<0.0001, Fig.4a).  OSS and chl-a values were also correlated very well 

(R2=0.79, p<0.0001) indicating chl-a is one of the primary source of OSS (Fig. 4b).  

Results from CDOM analysis showed that the spectral slope of SCDOM varied from 

0.012 to 0.017 nm-1. The average value of SCDOM was 0.015 nm-1, which was in 

accordance with observations in other studies with similar waters (Dall’Olmo et al., 

2005; Twardowski et al., 2004; Babin et al., 2003).  Values of aCDOM(443) ranged from 

0.66 to 2.59 m-1 with a mean of 1.25 m-1 and they were positively correlated with chl-a 

(R2=0.39, figure not shown) and OSS (R2=0.43, figure not shown) suggesting that the 

degradation of algal biomass as an important source of CDOM in the aquaculture ponds. 

In general, the decomposition of algal biomass and mineralization of CDOM controlled 

the magnitude of aCDOM  as the ponds are closed systems. 
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4.5.2 Deriving total absorption coefficients, at(λ) 

Phytoplankton pigment concentrations in the samples collected during the 2010 

field season were very high (aφ(443)max = 37.77m-1). Therefore, the at(708) was still 

dominated by pigment absorption, for example, aφ(708) contribution to the at(708) varied 

from 20 to 79% in the dataset. Also, magnitudes of at(708) ranged from 1.06 to 4.1 m-1 

with a standard deviation of 0.74 m-1
, which is a factor of 1-4 of the aw(708) values. 

Therefore, at(708) cannot be assumed to be aw(708) in these kinds of waters unlike Le et 

al. (2009) assumed in Meiliang Bay, China. Similar to Lee et al. (2002), at-w(708) was 

parameterized by finding an empirical relationship with χ described in the method section 

(Fig. 5, Table 2). The regression analysis showed strong sensitivity between at-w(708) and 

χ (R2=0.84, n=20, p<0.0001). To evaluate the accuracy of the empirical relation, it was 

applied to the 2011 data set and validation analysis showed an excellent agreement 

between the measured and modeled at(708) by producing a percent linear error of 10.2%, 

and slope and R2 between measured and modeled values were 0.96 and 0.72 respectively 

(figure not shown). Accuracy of the developed model was comparable with the accuracy 

of the Lee et al. (2002) inversion model at blue-green spectral region for open ocean 

waters and Le et al. (2009) model for turbid case 2 waters. It is anticipated that even 

higher accuracy can be achieved if the reference wavelength can be even moved further 

towards longer wavelengths around 753 nm; however, accurate retrieval of Rrs(λ) around 

that spectral region from a remote sensor is a challenging task in case 2 waters. 

4.5.3 Validation of the inversion model 

Accuracy of the newly parameterized inversion model was assessed using an 

independent dataset acquired during a different year and season (sampling time: April 
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2011). Outputs of the inversion model such as at(λ), aCDM(λ), and aφ(λ) were compared 

with the corresponding measured parameters within a wavelength range of 413-665 nm 

and the error analysis was performed.  Following the steps described above and 

summarized in Table 2, at(λ) for each sample was derived from Rrs(λ) measurements. 

bbp(λ0) at the reference wavelength (708 nm) was derived using step 3 in Table 2, and 

bbp(λ) at each wavelength was modeled  using the spectrally dependent hyperbolic 

function (Gordon and Morel, 1983) summarized in steps 4 and 5 (Table 2). Modeled 

bbp(λ) spectra showed considerable variations both in magnitude and spectral shape (Fig. 

6). bbp(560) varied from 0.96 m-1 to 1.87 m-1 with an average value of 1.23 m-1 in the 

validation dataset. Accuracy of the bbp(λ) and the exponent of the hyperbolic function, η, 

were not studied because of unavailability of the measured values in this study. Further, 

at(λ) values were derived from u(λ) as described in step 6 (Table 2).  

The comparison between modeled at(λ) and measured at(λ) is shown in Fig. 7. 

The magnitude and spectral shape of the modeled at(λ) spectra matches well with the 

measured ones. In order to quantify the deviation, percentage errors were calculated as a 

function of wavelength (MERIS band centers), ε(λ), and at each station, ε(n), within a 

wavelength range of 413-665 nm (MERIS band1-band7). No comparisons were made at 

681 nm as there was no effort to correct for the effect of chl-a fluorescence at that 

wavelength. The ε(n) values varied from 6.3-57.6% with an average of 17.15% for all 

sampling stations (Table 4). Although  ε(n) values were positively correlated with ad(443) 

(r = 0.38) and ad(443)/ap(443) ratio (r = 0.28), high retrieval errors at sampling stations 

S-2 and S-20 with ε(n) values of 57.6% and 41.3% respectively could not be explained by 

the  ad(443)/ap(443) ratio, where a ~2% difference in ad(443)/ap(443) ratio between 
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stations caused an increase in ε(n) values by ~50%. Further analysis showed that the 

retrieval error of at-w(708), empirically modeled from χ,  at S-2 and S-20 stations were 

40% and 23% respectively. Therefore, it can be concluded that modeling error associated 

with at-w(708) at those locations propagated to the final step and increased the at(λ) 

retrieval error.  After excluding those two sampling stations, the error range and average 

reduced to 6.3-28.8% and 13.75%, which is very encouraging. Similarly, the error for 

ε(λ) varied from 15.22-24.13 % and the average ε(λ) was 19.87%. Maximum and 

minimum error occurred at 443 and 665 nm respectively (Table 5).  

aCDM(λ) were retrieved using steps 7-10 (Table 2). The model retrieved aCDM(λ) 

with an average of 2.44 fold underestimation at 413 nm. The maximum underestimation 

at 413 nm was observed to be ~8 fold at station 9. Underestimation of aCDM(λ) values in 

these turbid productive waters was probably because of a combination of following three 

reasons: 1) modeled at(413) and at(443) values were underestimated, 2)  aCDM(443) 

makes just about 24% of at(443), i.e. close to negligible information to be sensed by a 

passive remote sensor, consequently analytically resolved aCDM could even be negative 

(see Lee et al., 2010); and 3) the modeled ξ and ζ values did not match the field values. In 

our dataset, measured values of ξ and ζ varied between 1.45-1.75 and 0.86-1.1 

respectively; whereas, the corresponding QAA v5 derived ξ and ζ values ranged from 

1.72-1.77 and 0.91-0.96 (Fig. 2c and 2d). An overestimation of ξ and underestimation of 

ζ can also lead to the underestimation of aCDM(443). Because of the same reasons, the 

model also produced a few negative aCDM(443) retrievals. Wherever the model retrieved 

negative values of aCDM(443), aCDM(λ) was assumed negligible for the retrieval of aφ(λ) 

from at(λ).  
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Finally, aφ(λ) were calculated by subtracting aCDM(λ) and water absorption 

coefficient, aw(λ), from at(λ). The model retrieved aφ(λ) values were compared with 

measured aφ(λ) at each station within 413-665 nm spectral range and for all samples at 

each MERIS band centers. Even though the retrieved aCDM(λ) were underestimated, 

retrieved aφ(λ) within 413 nm to 665 nm wavelength range were quite good (Fig. 8). For 

all sampling stations, the ε(n) varied within 7.09 -57.36% with an average of 26.04%. 

The maximum error occurred at station 6.  The model produced high error at four stations 

with ε(n) exceeding 30% because of combination of two reasons: 1) either retrieved 

aCDM(λ) was negative, and therefore not subtracted from at(λ), or 2) the retrieved aCDM(λ) 

was severely underestimated at that station. Similarly, the ε(λ) varied from 15.9-41.27 % 

within 413-665 nm and the average error was 27.24%. Maximum and minimum error 

occurred at 413 and 665 nm respectively (Table 5).  

Spectral shape of both measured and modeled aφ(λ) were also compared as 

another way of accuracy evaluation (Fig. 9). All measured and modeled aφ(λ) spectra 

were normalized to aφ(665) and the average spectral shape was computed for all samples 

at each wavelength. Spectral shape of modeled aφ(λ) matched very well (R2=0.97) with 

the measured aφ(λ) within 510-665 nm wavelength range. The maximum deviation was 

found at blue spectral region, 413 nm (~83%) and 443 nm (~95%). 

4.5.4 First order empirical approach for aCDM(λ) estimation 

As shown earlier, due to a small contribution of CDM absorption to the total, the 

analytical scheme retrieved either very low or negative CDM absorption coefficient. To 

put a remedy for this outcome for such waters, a supplementary method has also been 

provided for the first order estimation of aCDM(λ) using empirical approach specifically 
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for these type of turbid productive waters. Existing CDOM empirical algorithms in the 

literature (e.g. D’Sa et al., 2006; Mannino et al., 2008) exploited the blue wavelength 

regions by selecting Rrs(λ) at a single band or a Rrs band ratio to model aCDOM. 

aCDOM(443) can be empirically modeled from a reflectance band ratio (Kowalczuk et al., 

2005; Shanmugam, 2011). However, in algal laden highly absorbing waters, total 

absorption is dominated by aφ in the blue spectral region. Therefore, the uncertainty of 

retrieving aCDM at blue spectral region increases with higher aφ to aCDM ratio. In this 

research, aCDM(381), aCDM(443), and aCDM(510) values were derived using empirical 

approach. Linear regression equations were established between a log transformed 

reflectance band ratio, [log10(rrs(490)/rrs(510))], denoted as , and measured 

aCDM(381), aCDM(443) and aCDM(510). Selection of rrs bands at 490 and 510 nm is based 

on the assumption that aφ contribution at those bands will be comparatively less than 413-

443 spectral region. A straight line fit explained the relations (Fig. 10a, b, and c). 

aCDM(510) showed a stronger empirical relationship with the band ratio by producing the 

highest R2. Also, log10(rrs(490)/rrs(665)) showed its sensitivity to aCDM(381), aCDM(443) 

and aCDM(510) producing similar statistics as the previous band ratio. For comparison, 

scatter plot between log10(rrs(490)/rrs(665))  and  aCDM(510) (Eq. 4.8) is shown in Fig. 

10c.The resulting linear-fit regression equations were established as: 

 381 76.907 1.41,									 0.45, 20 (4.6) 

 443 40.023 0.82,								 0.47, 20 (4.7) 

 510 18.72 0.73,											 0.5, 20 (4.8) 

 510 6.15 0.15,													 0.5, 20 (4.9) 
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Similarly, SCDOM (nm-1) is often empirically modeled as a function of aCDOM at 

ultraviolet and blue spectral regions (Kowalczuk et al., 2006; Schwarz et al., 2002) or an 

absorption ratio such as aCDOM(413)/aCDOM(350) (Shanmugam, 2011). For model 

calibration, two empirical relationships were established between measured SCDM and 

aCDM using aCDM(381)/ aCDM(510) and aCDM(443)/aCDM(510) (Fig. 10d, and e). The 

empirical relationships are presented as: 

 0.0057
.

,										 0.94, 20 (4.10) 

 0.005
.

,											 	 0.95, 20 (4.11) 

To confirm the accuracy of the SCDM  models, Eqs. 4.9 and 4.10 were applied to 

the validation dataset to retrieve SCDM-381 and SCDM-443 for each sample. Note that in 

validation, aCDM ratios were modeled from rrs(490) and rrs(510) using Eq. 4.5-4.7 and 

used to retrieve SCDM-381 and SCDM-443. The residuals [measured SCDM –modeled SCDM] 

were calculated and analyzed to study the departures of the model predicted values from 

the measured SCDM values. The residuals did not reveal any trend of over or under 

estimation (Fig. 10f). Most of the residuals are within 	0.002	nm-1 with the exception of 

one sample up to	 0.005 nm-1. Overall, SCDM-381 offered better retrievals compared to 

SCDM-443 (Fig. 10f). Accuracy of the modeled aCDM(510) was better than aCDM(381) and 

aCDM(443). Therefore, aCDM(510) was selected as reference aCDM in the exponential model 

to retrieve aCDM(λ). aCDM(λ) was modeled using the classic exponential model given by 

Bricaud et al. (1981): 

 	 510 	 , (4.12) 
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where, either SCDM-381 or SCDM-443 can be used in place of SCDM . For comparison, both 

SCDM-381 and SCDM-443 were used to model aCDOM(λ) and termed as aCDM-381(λ) and aCDM-

443(λ) respectively.  

4.5.4.1 Limitation of the empirical retrieval of aCDM(λ) 

The empirical steps to retrieve aCDM(λ) in turbid productive waters were 

developed using a dataset with low aCDM contribution to the at(λ) (~8-45%  with a mean 

of ~24% at 413 nm). Therefore, it should be used for first order estimation of aCDM(λ) 

only in low CDM (relative to aφ(λ)) waters and existing steps in QAAv5 should be used 

otherwise.  Because of overlapping absorption peak of  chl-a and aCDM(λ), two band ratio 

of Rrs such as Rrs(490)/Rrs(560) and Rrs(413)/Rrs(443), denoted as 	 and 	, were 

used to characterize the waters those have very high at(443) and low aCDM(443)/at(443).  

In case 1 waters, 	 ratio increases with any decrease in chl-a. Similarly any increase 

in 	 can be interpreted as decrease in CDOM concentration in the water. Even though 

both 	 and 	 ratios are also sensitive to CDOM and chl-a relative concentration, 

the effect is minimal (Morel and Gentili, 2009). However, in case 2 waters the effect is 

considerable and therefore it is not feasible to use a single Rrs ratio to characterize either 

chl-a or CDM relative contribution. In our dataset, 	 ratio varies within 0.12 to 0.54 

whereas 	 varies within 0.89 to 1.61. These values were compared with 

corresponding values in International Ocean Color Coordination Group (IOCCG) 

synthetic dataset and found out the range of Rrs ratios that best characterize the waters 

under study (Fig. 11). Data from this study formed a distinct cluster of points in the three 

dimensional space formed by 	, 	, and aCDM(λ)/at(443); where at(443) is very 
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high and contribution of  aCDM(443) to at(443) is very low (~8-45%). The space could be 

represented by using thresholds for 	 and 	 ratios ( 	< 0.54 and 	>0.89). 

Based on the observations from this data, it is suggested that the proposed aCDM  

empirical scheme should be used in low relative CDM waters when 	 is less than 0.54 

and 	 is greater than 0.89.  

It should also be noted that the above discussed empirical schemes to model 

aCDM(λ) were derived from a small dataset but with a wide range of optical parameters 

(n=20) and the relations can be re-parameterized using a large dataset for even better 

accuracy and predictive ability. Nevertheless, results show that aCDM at 381, 443, and 510 

nm, and SCDM can be empirically modeled from Rrs(λ) data in turbid and productive 

waters with low relative CDM contribution. 

4.5.4.2 Validation of the first order empirical estimates of aCDM(λ) 

Modeled aCDM-381(λ) and aCDM-443(λ) values were compared with the measured 

aCDM(λ) values (Fig.12a and  Fig. 13a, b, and c). For all sampling stations, the ε(n) values 

varied within 11.36-133% with an average of 47.38% within 413-665 nm wavelength 

range. Out of 21 samples, errors of predictions for 5 samples were very high exceeding 

84%. However, the maximum errors occurred at higher wavelengths starting from 560 

nm where magnitude of aCDM  is less. Similarly, ε(λ) varied from 38.85-79.9% with an 

average of ~52% within 413-665 nm wavelength range. The minimum and maximum ε 

occurred at 413 and 665 nm. The error at shorter wavelengths (413-510 nm) varied from 

38.85 to 46.72%.  It should also be noted that the high ε values for aCDM-381(λ) at longer 

wavelengths has very little effect on the decomposition of at(λ) signal in that region 
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because of low magnitude of aCDM at longer wavelengths. For example, an error of 80% 

in aCDM(665) at station-20 can yield a deviation of 0.192 m-1 from the measured value, 

which is only ~4% of at value at that wavelength [at(665)=4.43 m-1]. Modeled aCDM-443(λ) 

values also showed magnitude of ε as similar to aCDM-381(λ). In the blue spectral region, 

aCDM-381(λ) produced comparatively less error (~1%) than aCDM-443(λ). 

When first order estimates of aCDM(λ) were used, retrieval accuracy of aφ(λ) 

somewhat improved at least in this dataset. aφ(λ) were calculated by subtracting aCDM-

381(λ) and aw(λ) from at(λ). Two sets of aφ(λ) such as aφ-381(λ) and aφ-443(λ) were calculated 

by subtracting aCDM-381(λ) and aCDM-443(λ) from at(λ) respectively. The modeled aφ(λ) 

values were compared with measured values within 413-665 nm spectral range. For all 

sampling stations, the ε(n) varied within 7.8 -76% with an average of 21.46%. The 

maximum error occurred at station-2 (76%) and after excluding station-2, the error range 

reduced to 7.8-43.12% and the average error reduced to 18.73%. This implies that the 

retrieved values are in close agreement with the measured ones (Fig. 12b and Fig. 13d, e, 

and f). Similarly, the ε(λ) varied from 16.94-34.15 % within 413-708 nm and the average 

error was 23.93%. Maximum and minimum error occurred at 413 and 665 nm 

respectively (Table 5). aφ-443(λ) errors were  ~2% more than aφ-381(λ) in this study. 

Overall, both produced similar accuracy. Also, results showed that the spectral shape of 

modeled aφ(λ) matched very well with the measured aφ(λ) (Fig. 14). The maximum 

deviation was found at blue spectral region, 413 and 443 nm (~30%), and the deviation 

was less than 15% elsewhere within the visible region.  
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4.5.5 Significance and applicability of the model 

Accurate estimation of aφ(λ) data from turbid productive waters is highly 

desirable to better understand the primary productivity and carbon uptake by algal 

biomass in a regional scale. To our knowledge, there is a lack of literature that focuses on 

retrieval of IOPs in highly turbid and productive waters. High turbidity and hyper-

eutrophic condition is not just restricted to aquaculture ponds, rather it frequently occurs 

in inland lakes, estuaries, and marginal seas. Cyanobacterial algal blooms (CAB) often 

occur in inland lakes and estuaries and critically affect the annual carbon and nutrient 

cycle. CAB is a serious water quality problem in the Baltic Sea that covered 

approximately an area of 100,000 km2 in 1994 and the blooming period lasted about a 

month (Kahru, 1997). CABs introduce new productions of nitrogen in the ecosystem 

through nitrogen fixation and further increase the trophic status of the system. Chl-a 

concentration during CABs often exceed 1000 mg m-3 in those hyper-eutrophic waters; 

e.g. during CAB in the Baltic Sea in summer 2002, chl-a concentrations were recorded as 

high as 1024 mg m-3 (Kutser, 2004). Hyper-eutrophic status of waters  and associated 

algal blooms have also been reported in Patos Lagoon, Brazil (Yunes et al., 1996), Gulf 

of Finland (Bianchi et al., 2000), Lake Erie, USA (Vincent et al., 2004), Lake 

Pontchartrain, USA (Mishra and Mishra, 2010) and Taihu Lake, China (Hu et al., 2010). 

The inversion algorithm presented in this study has been calibrated using a dataset with 

very high chl-a (95-1376 mg m-3) and TSS (69-401 mg l-1) range. Therefore, it could be 

applied to retrieve aφ(λ) in turbid productive waters as well as CAB dominated waters in 

inland lakes, coastal estuarine environments, and marginal seas. In addition, spectral 

shape of aφ(λ) spectrum could be obtained using Rrs(λ) data from hyperspectral sensors 
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such as Hyperion, the Hyperspectral Imager for the Coastal Ocean (HICO), and the future 

hyperspectral sensor, the Hyperspectral Infrared Imager (HyspIRI), that may provide 

more information on phytoplankton functional types.  

4.6 Conclusion 

A quasi-analytical inversion algorithm was parameterized to retrieve aφ(λ) 

spectrum from above surface remote sensing reflectance data in highly turbid and 

productive waters. aφ(λ) retrieval accuracy of the algorithm significantly improved after 

parameterization. Even though the algorithm underestimated aCDM(λ) values and 

produced a few negative retrievals, predicted aφ(λ) matched very well with the measured 

aφ(λ). An empirical scheme to retrieve at(708) was also developed using a small dataset. 

Parameterization of the empirical algorithm using a large dataset acquired from turbid 

productive waters could potentially increase the retrieval accuracy. A supplementary 

method has also been provided for first order estimation of aCDM(λ) using novel empirical 

techniques. aCDM at 381, 443, and 510 nm and SCDM were empirically modeled from 

rrs(490)/rrs(510) and used in the exponential model to derive aCDM(λ). Limitations of the 

empirical scheme for aCDM(λ) retrieval were discussed; and it was suggest that proposed 

aCDM  empirical scheme should only be used when 	< 0.54 and 	>0.89) (in low 

relative aCDM  waters). The analytical decomposition steps from QAAv5 should be used 

elsewhere. Retrieval accuracy of aφ(λ) somewhat improved after incorporating the first 

order estimates of aCDM(λ) in the algorithm. In the present form, the algorithm can be 

applied to Rrs(λ) data from multispectral sensor like MERIS and hyperspectral sensors to 

retrieve aφ(λ) in highly turbid and productive waters as well as in algal bloom (no scum 

forming) dominated hyper-eutrophic waters. 
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Table 4.1 Symbols and abbreviations 

Symbol Description Unit 
ap(λ) Absorption coefficient of particulate matter m-1 
ad(λ) Absorption coefficient of detrital matter m-1 
ACDOM(λ) Absorbance of colored dissolved organic matter  
aCDOM(λ) Absorption coefficient of colored dissolved organic matter m-1

aCDM(λ) Absorption coefficient of CDOM and detritus m-1

aw(λ) Absorption coefficient of pure sea water m-1

aφ(λ) Absorption coefficient of phytoplankton pigments m-1

at(λ) Total absorption coefficients, aw(λ)+ aφ(λ)+ aCDM(λ) m-1 
at-w(λ) at(λ) – aw(λ) m-1 
bbp(λ) Backscattering coefficients of particulate matter m-1

bbw(λ) Backscattering coefficients of pure sea water m-1

bb(λ) Backscattering coefficients of the total, bbw(λ)+bbp(λ) m-1

η Spectral power for backscattering coefficient  
Rrs(λ) Above-surface Remote sensing reflectance sr-1 
rrs(λ) Subsurface Remote sensing reflectance sr-1 
SCDM Spectral slope of CDOM and detritus absorption coefficient nm-1 
TSS Total suspended solids mg l-1 
ISS Inorganic suspended solids mg l-1 
OSS Organic suspended solids mg l-1 
IOP Inherent optical properties  
u Ratio of backscattering coefficient to the sum of absorption  and 

backscattering coefficient 
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Table 4.2 Steps of the inversion model and their mathematical derivations 

Steps Property Derivation 
Step 0  / 0.52 1.7  
Step 1 	

	
	 	

 
=

. ∗

∗
; 0.089, 0.125 

Step 2  where 
708	  

708 10 . . .  
 

	

0.01 ∗ 443 620

708 0.005 ∗
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443 ∗ 620

 

 
Step 3  

1
 

Step 4  
2.0 1 1.2 0.9
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Step 6  1
 

Step 7 411
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Table 4.3 Descriptive statistics of water quality parameters.  

 Average St. dev. Minimum Maximum n 
July 2010, Calibration Dataset 
Chl-a (µg l-1) 532.58 331.82 95.68 1376.57 20 
Chl-b (µg l-1) 14.07 10.29 5.94 38.82 20 
aφ(443) (m-1) 15.55 9.00 3.40 37.77 20 
aφ(665) (m-1) 6.23 3.81 1.21 16.19 20 
ad(443) (m-1) 2.90 2.07 0.79 8.01 20 
aCDM(443) (m-1) 4.33 2.06 1.56 9.45 20 
TSS (mg l-1) 177.33 80.20 69.80 401.20 20 
OSS (mg l-1) 102.30 25.65 60.00 162.00 20 
ISS (mg l-1) 85.41 65.40 14.60 247.20 20 
Chl-a/TSS (mg/g) 3.22 1.84 0.81 7.70 20 
ISS/TSS 0.41 0.16 0.16 0.68 20 
OSS/TSS 0.59 0.16 0.32 0.84 20 
 
April 2011, Validation Dataset 
aφ(443) (m-1) 10.27 2.87 6.43 18.04 21 
aφ(665) (m-1) 3.96 1.32 2.08 6.73 21 
ad(443) (m-1) 2.14 0.77 0.98 3.91 21 
aCDM(443) (m-1) 3.20 0.85 1.93 5.19 21 

‘St. dev.’ is the standard deviation, n is the total number of samples considered for the 
analysis. 
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Table 4.4 Percentage error, ε, between measured and model derived optical parameters 
for different samples 

Sample at(λ) aφ (λ) aCDM-

381(λ) 
aCDM-

443(λ) 
aφ-

381(λ) 
aφ-

443(λ) 
1 6.32 29.28 41.92 40.74 15.30 15.54 
2 57.62 31.92 42.60 44.04 76.09 76.84 
3 10.10 18.66 111.59 109.82 11.04 11.56 
4 7.69 16.16 23.06 22.32 14.07 14.08 
5 21.57 14.58 33.25 33.00 34.80 34.98 
6 27.88 57.36 88.68 88.07 20.76 20.44 
7 13.11 26.57 84.32 83.56 13.40 14.18 
8 9.92 27.11 133.07 131.56 17.44 17.68 
9 9.57 15.73 22.79 24.48 14.03 14.27 
10 14.52 26.92 44.54 45.09 11.53 11.56 
11 22.32 55.05 48.78 47.94 22.24 21.98 
12 6.55 19.32 61.68 62.03 16.30 16.78 
13 12.22 23.85 15.97 16.17 13.06 13.08 
14 9.90 11.85 23.61 23.74 26.83 28.17 
15 7.93 24.31 28.99 30.95 7.81 7.82 
16 21.46 38.29 22.99 23.58 22.04 21.89 
17 12.08 9.30 16.21 17.71 14.55 14.85 
18 12.62 7.09 15.38 17.02 15.24 15.45 
19 6.72 14.21 11.36 13.04 8.44 8.56 
20 41.34 26.71 104.18 109.16 43.17 44.66 
21 28.82 52.46 20.17 21.00 32.61 32.36 
Min 6.32 7.09 11.36 13.04 7.81 7.82 
Max 57.62 57.36 133.07 131.56 76.09 76.84 
Average 17.16 26.04 47.38 47.86 21.46 21.75 

. aφ (λ) values were derived using QAA v5 with reference wavelength at 708 nm and 
parameterized at(708). Other parameters were derived implementing first order estimates 
of aCDM(λ) in the QAA v5. Min, max, and average values of the retrieved parameters are 
also provided. 
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Table 4.5 Percentage error, ε, between measured and model derived optical parameters 
at different wavelengths 

Wavelength (nm)at(λ) aφ(λ) aCDM-381(λ) aCDM-443(λ) aφ-381(λ) aφ-443(λ) 
413 21.73 40.10 38.86 40.37 34.15 36.03 
443 24.13 41.27 42.03 43.11 23.66 23.72 
490 21.57 31.58 45.14 45.43 22.49 22.55 
510 21.43 22.74 46.72 46.72 26.97 26.97 
560 18.10 18.70 51.91 51.31 25.43 25.10 
619 16.96 20.42 59.78 59.50 17.93 17.95 
665 15.22 15.90 79.91 80.11 16.94 16.88 
Min 15.22 15.90 38.85 40.37 16.94 16.88 
Max 24.13 41.27 79.91 80.11 34.15 36.03 
Average 19.87 27.24 52.05 52.36 23.93 24.17 
. aφ (λ) values were derived using QAA v5 with reference wavelength at 708 nm and 
parameterized at(708). Other parameters were derived implementing first order estimates 
of aCDM(λ) in the QAA v5. Min, max, and average values are calculated within 413-665 
nm wavelength range. 
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Figure 4.1 (a) QAA derived at(λ) values after taking 560 nm as the reference 
wavelength, (b) QAA derived at(λ) values after shifting the reference 
wavelength to 708 nm and assuming at(708) is equal to aw(708), and (c) the 
measured at(λ) values. 
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Figure 4.2 (Comparison of QAA v5 derived aφ(λ) (a) with pad-measured aφ(λ) (b),  ξ 
(c) and ζ (d)  with the corresponding measured values.  

Dotted lines are 1/1 lines. 
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Figure 4.3 (Measured Rrs(λ) spectra, (a) dataset collected in July 2010 (n=20), and (b) 
dataset collected in April 2011(n=21). 



www.manaraa.com

 

81 

 

Figure 4.4 (a) Scatter plot between OSS, ISS and TSS in the dataset collected in July 
2010.  

Open circles: organic suspended solids; and filled circles: inorganic suspended solids. 
Linear least square fit shows the strong relationship between TSS and ISS (ISS = 
0.5402*TSS - 42.314, R2=0.93). (b) Scatter plot of OSS and chl-a. Linear least square fit 
shows the strong relationship between the two parameters (OSS = 0.0413*chl-a + 44.41, 
R² = 0.79). 
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Figure 4.5 Calibration of at-w(708) using the 2010 dataset.  

Dotted line is the least-square fit second order polynomial trend line. 

 

Figure 4.6 Modeled bbp(λ) spectra from Rrs(λ) 
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Figure 4.7 (a)Modeled at(λ) from Rrs(λ) data using the inversion model after 
parameterization, and (b) Measured at(λ) using filtered-pad method. 
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Figure 4.8 Scatter plot between measured aφ(λ) and modeled aφ(λ) at MERIS band 
centers.  

The solid gray line is the 1:1 line. 

 

Figure 4.9 Comparison of spectral shape of measured and modeled aφ(λ)  spectrum.  

Spectra were normalized to aφ(665) and average of normalized spectra of all samples are 
plotted for comparison.  
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Figure 4.10 Calibration and validation of aCDM and SCDM. Empirical relationship 
between log10(rrs(490)/rrs(510)) (  in the figure) and (a) 
aCDM(381), (b)  aCDM(443), (c) aCDM(510).  

Filled scatter points shows the empirical relationship between log10(rrs(490)/rrs(665)) 
(  in the figure) and aCDM(510). Solid gray line is the least-square fit line. (d) 
Power fit between measured aCDM(381)/aCDM(510) and SCDM, (e) Power fit between 
measured aCDM(443)/aCDM(510) and SCDM. The dotted lines are the least-square fit lines 
and (f) SCDM residuals from the validation analysis where SCDM-381 and SCDM-443 were 
modeled from corresponding aCDM ratios derived from rrs data collected in April 2011.  
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Figure 4.11 Scatter plot of aCDM(443)/at(443) as a function of Rrs(490)/Rrs (560) and Rrs 
(413)/Rrs (443) denoted as  and  in the figure.  

Data from this study (squares) are displayed in comparison with IOCCG synthetic dataset 
(circles). Size and color of the scatter points correspond to the magnitude of at(443). 
Because of the wide range of at(443) among all data,  at(443) in IOCCG data have been 
multiplied by 10 for better visual comparison. Note that the data points from this study 
fall in the three dimensional space where at(443) is very high and  aCDM(443) contribution 
to at(443) is very low (~8-45%).  
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Figure 4.12 (a) Scatter plot between measured aCDM(λ)  and modeled aCDM(λ)  at 
MERIS band centers, and (b) Similar plot for aφ(λ).  

The dotted line is the 1:1 line. 

  



www.manaraa.com

 

88 

4.7 References 

Arar, E.J. 1997. Determination of Chlorophyll a, b, c1 and c2, and Pheophytin a in 
marine and freshwater phytoplankton by High Permormance Liquid 
Cromatography. EPA ,(EPA.metod 447.0) 

Babin, M., Stramski, D., Ferrari, G.M., Claustre, H., Bricaud, A., Obolensky, G. & 
Hoepffner, N. (2003). Variations in the light absorption coefficients of 
phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters 
around Europe. Journal of Geophysical Research-Oceans, 108(C7), 3211, 
doi/10.1029/2001JC000882.  

Bianchi, T. S., Engelhaupt, E., Westman, P., Andren, T., Rolff, C., & elmgren, R. (2000). 
Cyanobacterial blooms in the Baltic Sea/ Natural or human-induced?, Limnology 
and Oceanography, 45, 716-726. 

Brewin, R.J.W., Sathyendranath, S., Hirata, T., Lavender, S.J., Barciela, R.M., & 
Hardman-Mountford, N.J. (2010). A three-component model of phytoplankton 
size class for the Atlantic Ocean. Ecological Modeling, 221, 1472-1483. 

Bricaud, A., Morel, A., & Prieur, L. (1981). Absorption by dissolved organic matter of 
the sea (yellow substance) in the UV and visible domains, Limnology and 
Oceanography, 26, 671 43-53. 

Buiteveld, H., Hakvoort, J.H.M., and Donze, M. (1994). The optical properties of pure 
water. Ocean Optics XII. 

Carder, K. L., Chen, F. R.,  Lee, Z. P.,  Hawes, S. K. & Kamykowski, D. (1999). 
Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chl-a 
and absorption with bio-optical domains based on nitrate-depletion temperatures, 
Journal of  Geophysical Research, 104, 5403–5421. 

Carder, K.L., Hawes, S.K., Baker, K.A., Smith, R.C., Steward, R.G., & Mitchell, B.G. 
(1991). Reflectance model for quantifying chlorophyll a in the presence of 
productivity degradation products. Journal of Geophysical Research, 96, 20599-
20611 

Craig, S. E.; Lohrenz, S. E.; Lee, Z.; Mahoney, K. L.; Kirkpatrick, G. J.; Schofield, O. M. 
& Steward, R. G. (2006). Use of hyperspectral remote sensing reflectance for 
detection and assessment of the harmful alga, Karenia brevis. Applied Optics, 45, 
5414-5425. 

Doron, M. , Babin, M., Mangin, A. &Fanton d'Andon, O. (2006). Estimation of light 
penetration, and horizontal and vertical visibility in oceanic and coastal waters 
from surface reflectance. Journal of Geophysical Research, 112, C06003, doi: 
10.1029/2006JC004007. 



www.manaraa.com

 

89 

D’Sa, E.J., Miller, R.L.,& Del Castillo, C. (2006). Bio-optical properties and ocean color 
algorithms for coastal waters influenced by the Mississippi River during a cold 
front. Applied Optics, 45:7410-7428. 

Dall'Olmo, G. & Gitelson, A. A. (2006).Effect of bio-optical parameter variability and 
uncertainties in reflectance measurements on the remote estimation of 
chlorophyll-a concentration in turbid productive waters/ Modeling results, 
Applied Optics, 45, 3577–3592.  

Falkowski, P.G., Katz, M.E., Knoll, A.H., Quigg, A., Raven, J.A., Schofield, O., & 
Taylor, F.J. (2004). The evolution of modern eukaryotic phytoplankton. Science, 
305, 354-360. 

Fargion, G. S. and J. L. Mueller. (2000). Ocean optics protocols for satellite ocean colour 
sensor validation. Revision 2,” NASA Tech. Memo. 209966, SeaWiFS Technical 
Report Server, (NASA Goddard Space Flight Center).  

Field, C.B., Behrenfeld, M.J., Randerson, J.T., & Falkowski, P. (1998). Primary 
production of the biosphere/ integrating terrestrial and oceanic components. 
Science, 281, 237-240. 

Garver, S. A., & Siegel,D. (1997).Inherent optical property inversion of ocean color 
spectra and its biogeochemical interpretation. 1. Time series from the Sargasso 
Sea, Journal of Geophysical Research. 102, 18607–18625. 

Gons, H.J., Rijkeboer, M., Bagheri, S., & Ruddick, K.G. (2000). Optical teledetection of 
chlorophyll a in estuarine and coastal waters. Environmental Science and 
Technology, 34, 5189-5192 

Gordon, H. R., and Morel, A. (1983). Remote assessment of ocean color for 
interpretation of satellite visible imagery/ A review, 44 pp., Springer-Verlag, New 
York. 

Gordon, H. R., Brown, O. B., Evans, R. H., Brown, J. W., Smith, R. C., Baker, K. S., & 
Clark D. K. (1988). A Semianalytic Radiance Model of Ocean Color, Journal of 
Geophysical Research., 93(D9), 10,909–10,924, doi/10.1029/JD093iD09p10909.  

Hu, C., Lee, Z.P., Ma, Ronghua, Yu, K., Li, D. (2010). Moderate resolution imaging 
spectroradiometer (MODIS).observation of cyanobacteria blooms in Taihu Lake, 
Chia, Journal of Geophysical research, 115, C04002, 
doi/10.1029/2009JC005511. 

Kahru, M. (1997). Using satellites to monitor large-scale environmental change in the 
Baltic Sea, p. 43–61. In M. Kahru and C. W. Brown [eds.], Monitoring algal 
blooms/ New techniques for detecting large-scale environmental change. 
Springer-Verlag. 



www.manaraa.com

 

90 

Kowalczuk, P., J. Olszewski, M. Darecki & S. Kaczmarek (2005)/ Empirical 
relationships between coloured dissolved organic matter (CDOM) absorption and 
apparent optical properties in Baltic Sea waters, International Journal of Remote 
Sensing, 26/2, 345-370 

Kowalczuk, P., Stedmon, C., & Markager, A. S. (2006). Modelling absorption by CDOM 
in the Baltic Sea from season, salinity and chlorophyll. Marine Chemistry, 101, 
1−11. 

Kutser, T. (2004). Quantitative detection of chlorophyll in cyanobacterial blooms by the 
satellite remote sensing, Limnology and Oceanography, 49, 2179-2189. 

Le, C.F., Li, Y.M., Zha, Y., Sun, D., & Yin, B. (2009). Validation of a Quasi-Analytical 
Algorithm for Highly Turbid Eutrophic Water of Meiliang Bay in Taihu Lake, 
China, IEEE Transactions on Geosciences and Remote Sensing, 47 (8), 2492-
2500. 

Lee, Z.P., Carder, K.L., R.A., and R. Arnone. (2002). Deriving inherent optical properties 
from water color/ A multi-band quasi-analytical algorithm for optically deep 
waters, Applied Optics, 41, 5755-5772. 

Lee,Z.P.,  Carder,K.L. (2004).Absorption spectrum of phytoplankton pigments derived 
from hyperspectral remote-sensing reflectance.  Remote Sensing of Environment 
89 p. 361–368  

Mannino, A., Russ, M. E., & Hooker, S. B. (2008). Algorithm development and 
validation for satellite-derived distributions of DOC and CDOM in the U.S. 
Middle Atlantic Bight, Journal of Geophysical Research, 113, C07051, 
doi:10.1029/2007JC004493. 

Maritorena, S., Siegel, D.A., & Peterson, A.R. (2002). Optimization of a semianalytical 
ocean color model for global-scale applications. Applied Optics, 41, 2705-2714 

Mishra, D. R. & Mishra, S. (2010). Plume and bloom/ effect of the Mississippi River 
diversion on the water quality of Lake Pontchartrain, Geocarto International, 25, 
555-568. 

Morel, A. &Gentili, B. (2009). A simple band ratio technique to quantify the colored 
dissolved and detrital organic material from ocean color remotely sensed data. 
Remote Sensing of Environement, 113, 998-1011. 

Morel, A.  & Prieur, L. (1977).Analysis of variations in ocean color,” Limnololy and 
Oceanography, 22, 709–722. 

Ohde, T. & Siegel, H. (2003). Derivation of immersion factors for the hyperspectral Trios 
radiance sensor. Journal of Optics a-Pure and Applied Optics, 5, 12-14. 



www.manaraa.com

 

91 

O’Reilly, J.,  Maritorena, S.,  Mitchell, B.,  Siegel, D., Carder, K.,  Garver, S., Kahru, M., 
& McClain, C. (1998).Ocean color chlorophyll algorithms for Sea-WiFS,  Journal 
of Geophysical Research, 103, 24 937–24 953. 

Pope, R.  & Fry, E. (1997).Absorption spectrum (380 - 700 nm) of pure waters/ II. 
Integrating cavity measurements,  Applied Optics, 36, 8710-8723. 

Roesler, C. S., & Perry, M. J.  (1995).In situ phytoplankton absorption, fluorescence 
emission, and particulate backscattering spectra determined from reflectance, 
Journal of Geophysical Research, 100, 13279–13294. 

Saba, V.S., Friedrichs, M.A.M., Antoine, D., Armstrong, R.A., Asanuma, I., Aumont, O., 
Behrenfeld, M.J., Ciotti, A.M., Dowell, M., Hoepffner, N., Hyde, K.J.W., Ishizaka, 

J., Kameda, T., Marra, J., Mélin, F., Moore,  J.K., Morel, A., O'Reilly, J., Scardi, 

M., Smith Jr., W.O., Smyth, T.J., Tang, S., Uitz, J., Waters, K., Westberry, T.K. 
(2011). An evaluation of ocean color model estimates of marine primary 
productivity in coastal and pelagic regions across the globe. Biogeosciences, 8, 
489-503. 

Schwarz, J. N., Kowalczuk, P., Cota, G. F., Mitchell, B. G., Kahru, M., Chavez, F. P., 
Cunningham, A., McKee, D., Gege, P., Kishino, M., Phinney, D. A., & Raine, R. 
(2002). Two models for absorption by colored dissolved organic matter (CDOM). 
Oceanologia,  44, 209−241. 

Shanmugam, P. (2011). New models for retrieving and partitioning coloured dissolved 
organic matter in the global oceans. Implications for remote sensing. Remote 
Sensing of Environment, 115, 1501–1521. 

Tassan, S. & Ferrari, G.M. (2003). Variability of Light Absorption by Aquatic Particles 
in the Near-Infrared Spectral Region. Applied Optics, 42, 4802-4810. 

Tucker, C.S., & Boyd, C.E (1985). Watr quality. In Channel catfish culture. Ed. C.S. 
Tucker. Elsevier Science Publishers. Amsterdam. Pp. 135-227. 

Tucker, C. S., Kingsbury, S. K., & Mischke, C. C. (2009): Bacterial Bioaugmentation of 
Channel Catfish Ponds, North American Journal of Aquaculture, 71:4, 315-319 

Twardowski, M.S., Boss, E., Sullivan, J.M. & Donaghay, P.L. (2004). Modeling the 
spectral shape of absorption by chromophoric dissolved organic matter. Marine 
Chemistry, 89, 69- 88. 

Yunes, J.S., Salomon, P.S., Matthiensen, A., Beattie, K.A., Raggett, S.L., & Codd, G.A. 
(1996).  Toxic blooms of cyanobacteria in the Patos Lagoon Estuary, southern 
Brazil, Journal of Aquatic Ecosystem Health, 5, 223-229. 



www.manaraa.com

 

92 

Vincent, R.K., Qin, X.M., McKay, R.M.L., Miner, J., Czajkowski, K., Savino, J., & 
Bridgeman, T. (2004).  Phycocyanin detection from LANDSAT TM data for 
mapping cyanobacterial blooms in Lake Erie. Remote Sensing of Environment, 
89, 381-392. 

Zhu, W., Yu, Q., Tian, Y. Q., Chen, R. F., & Gardner, G. B. (2011). Estimation of 
chromophoric dissolved organic matter in the Mississippi and Atchafalaya river 
plume regions using above-surface hyperspectral remote sensing, Journal of 
Geophysical Research, 116, C02011, doi:10.1029/2010JC006523. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

93 

CHAPTER V 

A QUASI-ANALYTICAL ALGORITHM TO QUANTIFY CYANOBACTERIAL 

PHYCOCYANIN: MODEL CALIBRATION AND VALIDATION 

5.1 Overview 

In this research, a novel technique to monitor cyanobacterial algal bloom (CHAB) 

using remote sensing reflectance measurements is presented. A multi-band quasi 

analytical algorithm that determines phytoplankton absorption coefficients, aφ(λ), from 

above surface remote sensing reflectance, Rrs(λ) measurements using inversion method 

was used. In situ data including remote sensing reflectance, phytoplankton pigment 

concentration, and absorption coefficients of optically active constituents in the water 

were collected from highly turbid and productive aquaculture ponds. A novel technique 

was developed to further decompose the aφ to obtain phycocyanin absorption coefficient, 

 at 620 nm, a primary peak of phycocyanin absorption spectrum. Validation of the 

model produced a median percentage relative error of ~22%. Strong empirical 

relationship between phycocyanin absorption coefficients at 620 nm and measured 

phycocyanin concentrations (R2=0.96, p<0.0001) also shows its potential for empirical 

retrieval of PC in optically complex waters. Results demonstrate that the new approach 

will be suitable for quantifying phycocyanin concentration in cyanobacteria dominated 

turbid productive waters. Band architecture of the model matches with the band 

configuration of the Medium Resolution Imaging Spectrometer (MERIS), European 
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space born remote sensor, and assures that MERIS reflectance products can be used to 

quantify cyanobacterial phycocyanin in optically complex waters. 

5.2 Introduction 

Cyanobacteria, also known as blue-green algae, dominate the phytoplankton 

community in inland lakes, estuaries and coastal waters during summer months, form 

algal blooms, and degrade the water quality. Many genera of cyanobacteria are known to 

produce toxins such as: neurotoxins (anatoxin-a), hepatotoxins (microcistin), and 

cytotoxins (cylindrospermopsins) (Metcalf et al., 2008, Boyer, 2008). In addition to 

toxicity, many species of cyanobacteria produce odorous compounds such as geosmin 

and 2-methylisoborneol (MIB) that cause “earthy-muddy” and “musty” odor in drinking 

water, which is also a serious issue in aquaculture industry. Fish stock absorbs the musty 

odor causing compound which eventually cause severe economic loss either because of 

increasing the production cost or by decreasing the demand (Hanson, 2003). Because of 

the potential health risk and economic loss to fishery, aquaculture, and tourism industry, 

cost-effective monitoring solutions should be developed for early warning in the affected 

regions. Remote sensing is a more viable option for this kind of environmental 

monitoring because of low cost, synoptic, and temporally repetitive nature of monitoring 

capabilities. Optical properties of phycocyanin (PC), the characteristic cyanobacterial 

photosynthetic pigment, in visible and near-infrared (NIR) wavelength range can be used 

to develop algorithms to detect and quantify cyanobacterial biomass in natural waters. PC 

has very distinct absorption characteristics (absorption maximum at 620 nm) which is 

prominent in the reflectance spectra acquired from cyanobacteria dominated water bodies 

(Glazer 1989; Richardson 1996). When the cyanobacterial biomass dominates the water 
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body, the reflectance spectrum shows an enhanced absorption feature at around 600-625 

nm and a reflectance maximum at 650 nm (Mishra et al., 2009; Kutser et al., 2006; 

Dekker et al., 1993) which can be used to fingerprint cyanobacteria in remotely sensed 

data. 

Most research pertaining to the detection and mapping of cyanobacteria from in 

situ remote sensing spectra have used the absorption and reflectance features from 620 

and 650 nm to develop relationships between Rrs and PC concentrations. To date, four 

broad types of algorithms have been proposed to quantify PC based on its absorption 

feature at 620 nm: 1) single band ratio empirical algorithm (Mishra et al., 2009; Schalles 

and Yacobi, 2000); 2) semi-empirical baseline algorithm (Dekker, 1993); 3) multiple 

band linear regression algorithm (Vincent et al., 2004); and 4) a nested semi-analytical 

band ratio algorithm (Simis et al., 2005).  Ruiz-Verdu et al. (2008) evaluated the 

performances of all existing algorithms and reported that different algorithms perform 

differently based on the strengths and weaknesses of the algorithms, such as, ease of use, 

spectral band availability, and other methodological biases (Ruiz-Verdu et al., 2008).  

It is known that chlorophyll-a (chl-a) and other accessory photosynthetic 

pigments act as confounding constituents while retrieving PC concentration from Rrs data 

(Mishra et al., 2009; Simis et al., 2005). In addition to PC, chl-a and other accessory 

pigments also absorb light at the PC absorption maximum (around 620 nm) and thus 

affect the accuracy of PC prediction algorithms. In order to minimize the chl-a influence, 

Simis et al. (2005) semi-analytically subtracted the chl-a absorption component from the 

phytoplankton absorption at 620 nm, aφ(620). It should be noted that Simis et al. (2005) 

used two empirically derived coefficients, relating model derived aφ(665) and aφ(620) 
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with measured ones, to estimate the proxies for aφ(665) and aφ(620) from model derived 

non-water absorption coefficients, at-w(665) and at-w(620). If the relative proportion of aφ 

and absorption by colored detrital matter (colored dissolved organic matter +detritus),  

aCDM varies outside the optimized range, the model could estimate erroneous PC values 

especially in turbid waters. In addition, the model does not consider apc(665) before 

subtracting the chl-a contribution at 620 nm which may also increase the estimation error.  

Similarly, Mishra et al. (2009) suggested to use the spectral information at 600 nm in 

simple band ratio algorithms even though the PC absorption maximum is centered around 

620 nm,  because at 600 nm chl-a has comparatively less absorption than at 620 nm. 

However, 600 nm could also be contaminated by 600  and add uncertainties to PC 

estimation in highly turbid and productive waters. 

In this study, a conceptual quasi analytical algorithm was developed to retrieve 

cyanobacterial PC concentration in turbid and productive waters. The specific objectives 

of this research are: 1) develop the conceptual algorithm to retrieve PC concentration in 

cyanobacteria, and 2) optimize the model parameters using optical and pigment 

measurements from turbid productive waters dominated by cyanobacterial biomass, and 

validate the algorithm for accuracy assessment. Two field campaigns were carried out at 

Delta Research Extension Center aquaculture ponds, Mississippi State University 

research facility located near Stoneville, MS, USA during 13-16 July, 2010 and 28-29 

April, 2011. These aquaculture ponds are shallow water systems with surface area 

ranging from 0.4-1.62 ha and average depth of 1.0 m and have no watersheds. The 

aquaculture ponds were sampled for this study because of their eutrophic to 

hypereutrophic status (chl-a concentration exceeding 1000 mg m-3 in summer months) 
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with cyanobacteria dominating the phytoplankton community during summer and 

occasionally during spring months (Tucker and Boyd, 1985).  

5.3 Development of the conceptual algorithm 

5.3.1 The inversion method 

The quasi analytical algorithm (QAA) (Lee et al., 2002) is a multi band inversion 

algorithm that inverts total absorption coefficients, at(λ), and particulate backscattering 

coefficients, bbp(λ), from Rrs(λ) measurements. Unlike other semi analytical algorithms 

(e.g., Hoge and Lyon, 1996; Maritorena et al., 2002), QAA retrieves at(λ) first and then 

decomposes it into individual absorption components. In addition, it does not require 

spectral models for aφ(λ) and retrieves it independently from Rrs(λ). The model has been 

extensively validated using simulated and field datasets from different geographic regions 

(Lee et al., 2002; Lee et al., 2004; Le et al., 2009, Craig et al., 2006; Zhu et al., 2010) 

and shown that the model was able to retrieve at(λ) with a percentage difference of <20% 

between the measured and modeled data within 413-665 nm range. Recently the 

algorithm was parameterized to retrieve aφ(λ) in extremely turbid and cyanobacteria 

dominated hypereutrophic waters, where, aφ(443)  (3.44-37.67 m-1) contributes >54% of 

the at(443) (4.99-47.21 m-1) (Mishra et al., 2012). The model was able to retrieve aφ(λ) 

with an average percentage error of 27.24% within 413-665 nm range (Mishra et al., 

2012). A brief description of the parameterized QAA algorithm including the 

mathematical steps is provided in Appendix A. 
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5.3.2 Decomposition of aφ(620) for PC retrieval 

In this research, the QAA derived aφ(λ) was further decomposed to retrieve PC 

absorption at 620 nm. aφ(λ) provides the information about the absorption by 

phytoplankton pigments as a whole. It should be noted that absorption by all intracellular, 

both major and accessory pigments contribute to the aφ(λ) spectrum. The proposed 

decomposition method is based on the simple assumption that aφ(620) and aφ(665) are 

approximately equal to the sum of chl-a and PC contribution at those wavelengths. In 

another words, contribution of pigment absorption other than chl-a  and PC to the aφ(620) 

and aφ(665) was considered negligible.  

 665 665 665  (5.1) 

 620 620 620  (5.2) 

where, λ  and λ  are the absorption coefficients of chl-a and PC respectively. 

These two simple algebraic equations can be solved to retrieve a 620  as: 

 620 φ φ , (5.3) 

where, ψ1= a 665 /a 620  and ψ2= a 665 /a 620  and their values can be 

empirically retrieved from Rrs band ratios. Further, if the specific absorption coefficient 

of PC at 620 nm, a∗ 620  , is known, concentration of PC can be estimated as: 

 PC	 mg	m 	 ∗  (5.4) 

However, ∗  significantly varies with species type, season, and geographic 

region. Any uncertainties associated with ∗ 620  estimation will introduce error in 
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predicting PC concentration. Because of the difficulties associated with retrieving 

∗ 620  sample by sample and especially its inapplicability in remote sensing research, 

an empirical approach has been used to retrieve ∗ 620  from a reflectance band ratio.  

The major advantage of this algorithm is that unlike the existing semi analytical 

method (Simis et al., 2005) this method does not neglect the aCDM(620). It also does not 

assume the bbp(λ) to be spectrally neutral. In addition, it considers the PC absorption at 

665 nm and incorporates that information to algebraically retrieve 620 . 

5.4 Data and methods 

5.4.1 Remote sensing reflectance (Rrs) 

A dual sensor-system with two inter-calibrated Ocean Optics spectroradiometers 

was used to collect remote sensing reflectance data in the range 400-900 nm with a 

sampling interval of 0.3 nm as in DallO’lmo, et al., (2005). Radiometer 1, equipped with 

a 25° field-of-view optical fiber measured the upwelling radiance just below the air water 

interface, expressed in digital numbers as DNLu(λ); whereas, radiometer 2, equipped with 

an optical fiber and cosine diffuser (yielding a hemispherical field of view) acquired 

above surface down welling irradiance, expressed in digital numbers as DNEd(λ). To 

match their transfer functions, inter-calibration of the radiometers was accomplished by 

measuring the upwelling radiance of a white Spectralon reflectance standard (Labsphere, 

Inc., North Sutton, NH) simultaneously with incident irradiance. The two radiometers 

were inter-calibrated immediately before and after measurements in each field site. After 

the data acquisition, Rrs was calculated as follows: 

 ,

,
 (5.5) 
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Where, t is the transmittance at the air-water interface (0.98); n is the refractive 

index of water (1.33); DNLu,ref and DNEd,ref  are digital numbers representing upwelling 

radiance and downwelling irradiance over the white Spectralon panel; ρref is the 

irradiance reflectance of the Spectralon panel; Fi (λ) is the spectral immersion factor 

(Ohde and Siegel, 2003). For each station 6 consecutive scans were recorded and further 

averaged to calculate a representative Rrs(λ) spectrum (Fig. 5.1a). 

5.4.2 Water quality parameters 

5.4.2.1 Chlorophylls 

Water samples for chl-a and chl-b  analysis were simultaneously collected in 1L 

Niskin bottles and immediately filtered onto GF/F filters (Whatman, 0.7 µm pore size) 

under low vacuum (<5 inch of Mercury). Sample were extracted in triplicates using 

acetone extraction procedure and concentrations were measured using HPLC as in 

Environmental Protection Agency method 447 (Arar, 1997).   

5.4.2.2 Phycocyanin 

Water samples for PC analysis were filtered immediately after collection through 

a 0.2 μm nucleopore membrane filters (Milipore) under low vacuum. Filters were placed 

into a 15 mL falcon tube then frozen at -80oC until analysis. Prior to analysis, filters were 

transferred to a 50 mL polycarbonate centrifuge tubes, allowed to reach ambient room 

temperature, and then suspended in 5 mL of 50 mM phosphate buffer. Samples were 

homogenized as in Sarada et al. (2009) using a sonicator. Tip of the sonicator was rinsed 

twice with 5 mL of 50 mM phosphate buffer each time and collected in the centrifuge 

tube. Samples were centrifuged at 5o C, 27,200g for 25 minutes. Samples were again 
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homogenized and the tip of the sonicator was rinsed with 5 mL of buffer and collected in 

the centrifuge tube and again centrifuged in the same settings. Finally, supernatant was 

collected and absorbance was measured using a Perkin Elmer lambda 850 

spectrophotometer (Perkin Elmer Inc., Waltham, MA, USA) (Fig. 5.2). Concentration of 

PC was calculated using the equation from Bennett and Bogorad (1973).  

5.4.2.3 Measurement of absorption coefficients 

Surface water samples were collected in 1 L Niskin bottles and immediately 

filtered onto 0.7 μm Whatman GF/F filters under low vacuum (<5 inch of mercury). The 

volume of water filtered varied from 50-100 mL depending on the load of particulate 

matter in the sample. Particulate absorption coefficient, ap(λ), and absorption coefficient 

of detrital matter, ad(λ),  were determined using standard quantitative filtration technique 

(QFT) as described in Fargion and Muller (2000). A Perkin Elmer lambda-850 

spectrophotometer with an integrating sphere was used to measure absorbance of the 

samples within a spectral range from 400 to 800 nm. Further, aφ(λ) was computed by 

subtracting ad(λ) from ap(λ). Finally, aφ(λ) was corrected for residual scattering by 

subtracting aφ(800) from all wavelengths (Tassan and Ferrari, 2003). Water samples for 

colored dissolved organic matter (CDOM) analysis were filtered immediately after 

collection through a 0.2 μm nucleopore membrane filters under low vacuum. A detailed 

description of the methods of absorption measurements from the aquaculture ponds were 

provided in Mishra et al. (2012). Absorbance of CDOM, ACDOM (λ) was measured 

following the standard protocol (Fargion and Muller, 2000) as described in Mishra et al 

(2012). The aCDOM(λ) (m-1) for path length, l (m-1) was calculated as:  
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.

 (5.6) 

5.4.3 Error analysis 

PC concentration varied within about 2-3 order of magnitude in the current 

dataset. Therefore, it is more meaningful to assess the uncertainty of model retrieved PC 

by providing mean and median relative error (%) instead of root mean square error 

(RMSE). The errors were calculated as provided in Campbell and O’Reilly (2006). 

Mean error or bias is calculated as: 

 ∑  (5.7) 

Where,  is model derived parameter and Ci is the measured parameter. 

Mean Squared Error (MSE) is calculated as: 

 ∑  (5.8) 

Root Mean Squared Error (RMSE) is then calculated as: 

 √  (5.9) 

  (5.10) 

 

Assuming normality of log error, , the relative error statistics can be 

estimated as: 

 	 	 1 100 (5.11) 

 	 	 1 100 (5.12) 
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 	 	 	 	 exp 100 (5.13) 

where 	 10  and	 	 10  are the mean and standard deviation of / . 

Slope and R2 of least-square fit between measured and model retrieved parameters were 

also used to report the consistency of the algorithm retrievals whenever needed. 

5.5 Results and discussions 

5.5.1 Water quality parameters 

Analysis of water samples from the aquaculture ponds showed a wide range of 

pigment concentration. PC concentration varied from 68.13 to 3032.47 mg m-3 with an 

average value of 418.76 mg m-3. The high values indicate the abundance of PC 

containing cyanobacteria in the waters during the sampling period. Chl-a concentration 

varied within 59.4-1376.6 mg m-3 with an average of 302.06 mg m-3. PC: chl-a ratio 

varied within 0.3-3.29 (mean=1.23) indicating cyanobacterial dominance in the 

phytoplankton community structure (Table 5.1). Strong dependence was found between 

chl-a and PC concentration in the entire dataset (r=0.91). Similarly, a strong positive 

correlation was found between chl-a and PC in the 2010 dataset (r=0.94, Fig. 5.3) further 

corroborating the fact that algal community was mostly dominated by cyanobacterial 

biomass. However, a weak relationship was found between those pigments in the 2011 

dataset indicating a mixed algal community. Chl-b concentration varied from 1.57-13.71 

with a mean of 4.36 mg m-3. Strong positive correlation was found between chl-a and 

chl-b (r=0.79). 
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Absorption measurements show that the water samples were collected from 

highly turbid and productive waters where aφ(443)(4.24-37.67 m-1) contributes >59% 

towards the at(443) (8.85-47.21 m-1) (Table 5.1). aCDM(620) varied within 0.09-1.12 m-1 

with a mean value of 0.32 m-1 supporting the fact that its effects cannot be assumed 

negligible in semi- and quasi analytical algorithms to retrieve PC in turbid and productive 

waters. In our dataset, aCDM(620) was ~3-11% of aφ(620). An uncertainty of this 

magnitude may introduce considerable amount of error in the analytical estimation of PC 

especially in waters with low PC concentration. Mean relative contribution of aCDM  to 

at(665) and at(708) was found to be 3.4 and 3.8% respectively. 

5.5.2 Retrieval of aφ(λ) spectrum from Rrs(λ) 

QAA retrieved aφ(λ) values were compared with filter-pad measured values for 

accuracy assessment (Fig. 4). In this research, the retrieval accuracy of aφ(620) and 

aφ(665) was shown because the proposed conceptual model uses retrieved aφ values only 

at those band centers. A detailed parameterization and validation of the QAA to retrieve 

aφ(λ) in highly turbid and productive water can be found in Mishra et al. (2012). Mean 

relative error (%) for aφ(620) and aφ(665) of all samples was 16.15 and 14.72% 

respectively; whereas the median relative errors of aφ(620) and aφ(665) retrieval were 

11.6 and 12.74% respectively. One samples showed relatively high error for both aφ(620) 

( ~60%) and aφ(665) (30%). Overall, the relative error of retrieved aφ(620) and aφ(665) 

was about 30%.  
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5.5.3 Retrieval of aPC(620) from aφ(620) 

5.5.3.1 Using ψ1 and ψ2 measured from experimental data 

Newly proposed method (Eq. 5.3) was used to retrieve 620  from aφ(620) 

and aφ(665). It should be noted that the biggest challenge of this method was to tune the 

values of ψ1 and ψ2 from Rrs band ratios because they vary considerably due to package 

effect and therefore cannot be considered as constants. Value of ψ1, [achl(665)/achl(620)],  

and ψ2, [ (665)/ (620)], were measured in vitro after extracting pigments and 

measuring their absorption coefficients in a spectrophotometer.  Chl-a was extracted in 

acetone from 7 samples in 2010 dataset and the data were used to calculate ψ1, whereas, 

the same absorption data those were used to quantify PC concentration was also used to 

calculate ψ2.  

Strong dependence (power fit) was found between ψ1 and chl-a concentration in 

this dataset (R2=0.93, Fig. 5.5a). . After including ψ1 values for the lower range of chl-a 

concentration from literature (Bidigare et al., 1990; Bricaud et al., 2004), R2 of the power 

fit increased to 0.96 indicating its validity even in the lower chl-a (5-50 mg m-3) range 

(relative to very high concentration in this study) (Fig. 5.5a). Considering 

rrs(560)/rrs(665) as a proxy of chl-a concentration, an empirical model was established 

between the band ratio and  ψ1. A logarithmic fit showed strong relationship between the 

two (R2=0.89, Fig. 5.5b). Empirical model was used to retrieve ψ1 for all samples for 

further analysis. Similarly, ψ2 was empirically modeled from rrs(620)/rrs(665) band ratio. 

A power fit explained about 50% variance in the dataset (R2=0.5, Fig. 5.5c). 

Using the empirically retrieved ψ1 and ψ2 in Eq. 5.3, 620  values were 

calculated from aφ(620) and aφ(665). For accuracy assessment, retrieved 620  
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values were compared with 620  measured in vitro (Fig. 5.6a). It should be noted 

that there was a systematic overestimation of model retrieved	 620 , however, given 

that the retrieved 620  were close to the measured values, intercept of the best-fit 

line between PC and 620  should be close to zero. In this case, a linear fit produced 

an intercept of 1.76 (Fig. 5.6a) which may indicate that experimentally measured (in 

vitro) ψ1 values were larger than the corresponding ψ1 values if measured in vivo because 

of no package effect.  

5.5.3.2 Using ψ1 and ψ2 derived by optimization 

Understanding the difficulty of in vivo measurements, ψ1 values were retrieved by 

optimization. For each sample, ψ1 was solved using in vitro measured 620  and ψ2, 

and filter-pad measured aφ(620) and aφ(665) (Eq. 5.3).  ψ1 was varied iteratively within 

0.8-2 with a 0.001 increment and the  ψ1 value that returns the most accurate 620   

value was selected. To assess the accuracy of the decomposition, the method was 

evaluated in an ideal case where the parameters ψ1 and ψ2 are known. 620  was 

estimated from the optimized ψ1, measured ψ2 values. The model retrieved 620  

values were compared with measured 620  (Fig. 5.7a). Retrieved 620  

matched very well with the measured values with an average relative error of ~10%. A 

linear fit between model retrieved and measured  620  produced a slope of 1.02 and 

an intercept of 0.0059 (R2=0.99, Fig. 5.6a). 

The newly proposed method produced very high retrieval accuracy when sample 

by sample optimized ψ1 and measured ψ2 values were used; however, this method is not 

practical for a remote sensing mapping protocol. Therefore, another empirical model was 
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developed by establishing a power fit between optimized ψ1 values and rrs(560)/rrs(665) 

(R2=0.39, Fig. 5.8). Later, modeled ψ1 and ψ2 values were used to retrieve	 620 . Fig. 

5.9(a) shows the comparison of model retrieved 620  with measured 620 . 

Excluding 2 samples, all other samples fell close to the 1:1 line. The average relative 

error of the model retrieval was ~28%. After excluding the points with high aφ(620) 

estimation error, the average relative error decreased to ~22%.  

5.5.4 Retrieving PC concentration from aPC(620) 

PC concentration can be calculated if 620  and ∗ 620  are known (Eq. 

5.4). However, ∗ 620   values widely vary among different species of cyanobacteria 

as well as with varying nutrient and light conditions (Simis et al., 2005; Tandeau, 1977). 

Because of this variability, Simis et al. (2005) used a sample-by-sample ∗ 620  

information to retrieve PC concentration in lake Loosdrecht, The Netherland and was 

able to retrieve PC with a better accuracy (RMSE=6.5 mg m-3 or 19%; R2=0.94). 

However, the accuracy considerably decreased when a constant  ∗ 620  was used to 

retrieve the PC concentration. In this study, PC concentration was retrieved in three 

different ways, such that the effects of  ∗ 620  on final PC retrieval can be analyzed, 

including: 1) using known ∗ 620  values, 2) using the mean  ∗ 620  value, and 3) 

using modeled  ∗ 620  values. The three different cases were analyzed using 

620  retrieved from: a) optimized ψ1 and known ψ2, and b) modeled ψ1 and ψ2.  

5.5.4.1 PC from optimized ψ1 and measured ψ2 

PC concentrations were estimated from 620  derived by using optimized ψ1 

and measured ψ2 values. Therefore, final estimation errors of PC can only be attributed to  
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∗ 620 . First, sample-by-sample measured values of  ∗ 620  were used in an ideal 

case and compared with measured PC values (Fig.5.7b). The mean relative error of PC 

estimation was 10.06%. Slope and R2 of the straight line fit between measured and 

retrieved PC concentration were ~1 and 0.99 highlighting very high retrieval accuracy. 

However, using sample-by-sample  ∗ 620  is not feasible in remote sensing. 

Therefore, the mean value of  ∗ 620  of all samples was used in this study (0.0048 m2 

mg-1) to estimate PC. When compared, estimated PC values still matched very well with 

the measured (R2=0.98, slope=0.96, Fig. 5.6b). However, the mean relative error 

increased to 22.32% (Table 5.2). It was also noticed that  ∗ 620  linearly increased 

with rrs(620)/rrs(665) (R2=0.4) and explained the variability to some extent. Use of 

modeled ∗ 620  brought the mean relative error down to 20.36%. In all three cases, 

mean relative error of PC estimation varied from ~10 to 22%. 

5.5.4.2 PC from modeled ψ1 and ψ2 

PC estimation error was minimal when it was calculated using the above 

mentioned optimization process. However, this is impractical to be used in remote 

sensing, therefore, PC concentration was estimated from 620  that was retrieved 

from modeled ψ1 and ψ2.  Sample-by-sample measured  ∗ 620  were used for PC 

estimation (Fig. 5.9b). The mean and median relative error of PC estimation was 37.18% 

and 27.2% respectively. When the mean  ∗ 620  was used, the mean and median 

relative error decreased to ~34.86% and 25.96% respectively. Similarly, mean relative 

error of PC estimation using modeled  ∗ 620  was 36.23% and the median relative 

error decreased to ~22% (Table 5.2). 
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5.5.5 Empirical model for PC retrieval 

An empirical model was also developed for potential use to retrieve PC with an 

expectation that it will reduce the uncertainties in PC prediction because of the variability 

in ∗ 620 . A straight line fit explained the strong relationship and variance between 

620  and PC concentration very well (R2=0.96, p<0.0001) (Fig. 5.10). The 

functional relationship between aPC(620) and PC concentration can be explained using 

parameters of the straight line fit where the slope is interpreted as the mean  ∗ 620 . In 

this dataset, the slope was close to the mean value of	 ∗ 620 . 

5.5.6 Algorithm Uncertainties 

Even if we assume that the in situ Rrs measurements were completely error free; 

there are still multiple sources of uncertainties at different steps of the above developed 

procedure. Lee et al. (2010) have systematically studied the sources of uncertainties of 

inverted inherent optical property products from QAA. For coastal waters, errors from the 

modeled at(λ0) at the reference wavelength will have a larger effect, as compared to bbp(λ) 

modeling errors on the at(λ) estimation. It was found that for strongly absorbing waters, 

when at(440) approaches 0.5 m-1, uncertainty in retrieving at(440) could be up to + 37% 

(Lee et al, 2010). There could be even considerably higher uncertainties in aφ and aCDM(λ) 

estimation because of the algebraic nature of the decomposition of at(λ) signal using 

empirically derived spectral shape parameter. In this research, even another step has been 

added to decompose the aφ(620) for retrieving 620  using similar algebraic methods, 

where the coefficients, ψ1 and ψ2, were modeled from rrs band ratios. Therefore, 

uncertainties with those values will introduce errors in the final estimation of aPC(620) as 

well. 
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Another critical source of error in PC modeling is from the variability of 

∗ 620 . As discussed earlier, ∗ 620  can vary based on the response of the 

cyanobacteria species to environmental and optical conditions (Simis et al., 2005). 

Grossman et al. (1993) reported that a number of phycoerythrin (PE) and PC hexamers in 

phycobilisome structure (PBS) change based on the quality of light availability. More PC 

pigments are synthesized in cyanobacteria cells when exposed to red light, whereas, more 

PE pigments are synthesized in cyanobacteria cells when exposed to green light. Hence, 

the intra-cellular PC and PE concentrations are sensitive to the quality of light availability 

and can have corresponding effect on  ∗ . It has also been reported that the cell 

morphology and photo adaptation may cause variability in  ∗ λ  (Satyendranath et 

al., 1987; Bricaud et al., 1995). Similar reasons may cause variability in  ∗ 620  as 

well. Also, being an accessory photosynthetic pigment that harvests light in the “green 

gap” of chl-a, the cellular PC is more likely to vary because of changing nutrient level 

and light condition and consequently affecting the ∗ λ  (Tandeau, 1977). In this study, 

∗ 620  varied from 0.003 to 0.006 m2 mg-1 with an average value of 0.0048 m2 mg-1. 

If the mean  ∗ 620  is used as a constant, the model will have 25% underestimation 

for the sample with highest ∗ 620  and 37.5% overestimation for the sample with 

lowest ∗ 620 . However, use of the the modeled ∗ 620  values addresses the 

variability to some extent and somewhat reduces the estimation error. Model 

uncertainties also depend on the relative contribution of cyanobacteria in the water 

supporting the findings in Simis et al (2005). Results show that the relative errors were 

higher for samples with PC:Chl-a > 0.5 (Fig. 5.11). Samples with lower aPC 
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(620)/aφ(620) and aPC(620)/aCDM(620) values also showed higher relative errors (Fig. 

5.12). 

Another source of error could have been from the analytical measurement of PC 

concentration. Sarada et al. (1999) reported that extraction procedures can affect the 

quality of extracted PC and hence the final accuracy of PC estimation. The samples 

extracted by homogenization using a sonicator showed a minor second peak at 678 nm, in 

addition to the major peak at 620 nm, indicating some chlorophyll contamination while 

disintegrating the cells (Sarada et al., 1999). In this study, homogenization procedure was 

used for the extraction of PC. Hence samples with high chl-a and chl-b concentration will 

have higher chance of inaccuracy. Similarly, extraction efficiency of PC samples also 

affects the final PC concentration as well as the ∗ 620 . For example, lower (higher) 

extraction efficiency could over (under) estimate ∗ 620  and will eventually affect the 

final estimation accuracy. 

5.6 Conclusions 

A novel method has been developed to quantify PC using the multiband quasi-

analytical algorithm (Lee et al., 2002). In a parallel study, QAA was parameterized to 

retrieve aφ(λ) in extremely turbid and hypertrophic waters (Mishra et al., 2012). The 

newly developed method was successful in decomposing the aφ(620) to 620  with a 

mean relative error of ~28%. Magnitude of ∗ 620  varied widely (0.003-0.006 m2 mg-

1) in this dataset. To reduce the uncertainty in PC estimation because of ∗ 620  

variability, an empirical model was developed to retrieve ∗ 620  from 

rrs(620)/rrs(665). PC concentration was calculated by dividing 620  values by 
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modeled ∗ 620 . The mean and median relative error of PC estimation was 36.23% 

and ~22 % respectively. An empirical relationship was also established between model 

derived 620  and measured PC concentration. A straight-line fit to the data 

explained strong dependence between the variables (R2=0.96, p=0.0001). The newly 

developed method shows a strong potential of quantifying and mapping PC in optically 

complex turbid and productive waters. Findings from this research are based on a small 

dataset with a wide range and because of the same reason the robustness of the new 

empirical steps to retrieve ψ1 and ψ2 have not been fully assessed. Future work will focus 

on using a large dataset for a robust optimization and validation of the proposed model. 

Results demonstrate that the new approach will be suitable for quantifying PC 

concentration in cyanobacteria dominated turbid productive waters such as inland lakes 

and estuaries. Band architecture of the model matches with the spectral channels of the 

Medium Resolution Imaging Spectrometer (MERIS) and assures that MERIS reflectance 

products can be used to quantify cyanobacterial harmful algal blooms in optically 

complex waters.       
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Table 5.1 Descriptive statistics of pigment and absorption coefficient measurements 

Parameters Mean Std Min Max N 
Pigment Concentrations 
PC (ug/L) 418.76 669.75 68.13 3032.47 24 
Chl-a (µg l-1) 295.96 302.06 59.40 1376.60 24 
Chl-b (µg l-1) 4.36 3.15 1.57 13.71 18 
PC:Chl-a 1.23 0.73 0.30 3.29 24 
 Total Absorption Coefficients, at(m

-1) 
at(443) (m-1) 16.21 8.15 8.85 47.21 24 
at(620) (m-1) 5.25 2.97 2.07 15.33 24 
at(665) (m-1) 5.42 2.54 2.55 13.84 24 
at(708) (m-1) 1.76 0.44 1.23 3.07 24 
 Phytoplankton Absorption Coefficients, aφ (m

-1) 
aφ(443) (m-1) 12.54 6.77 5.24 37.67 24 
aφ(620) (m-1) 4.66 2.80 1.61 13.93 24 
aφ(665) (m-1) 4.80 2.44 2.04 12.75 24 
aφ(708) (m-1) 0.86 0.40 0.37 1.94 24 
aφ(443)/ at(443) 0.76 0.06 0.59 0.85 24 
aφ(620)/ at(620) 0.87 0.04 0.78 0.94 24 
 Absorption Coefficients of CDOM and Detritus, aCDM (m-1) 
aCDM(443) (m-1) 3.66 1.63 2.08 9.54 24 
aCDM(620) (m-1) 0.32 0.21 0.09 1.12 24 
aCDM(665) (m-1) 0.19 0.13 0.04 0.67 24 
aCDM(709) (m-1) 0.07 0.06 0.01 0.30 24 
aCDM(620)/aφ(620) 0.07 0.02 0.03 0.11 24 
PC Absorption Coefficients  

 (m-1) 1.87 2.92 0.30 13.94 24 
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Table 5.2 Mean, median, standard deviation of relative error from models with 
different ψ1 and 

∗ (620).  

Rel. Error (%) Mean Median  Std  Slope R2 
Optimized ψ1andMeasured ψ2 
Known ∗  10.06 6.19 8.03 ~1 0.99 
Mean ∗  22.32 15.93 16.55 0.96 0.98 
Modeled ∗  20.36 21.61 12.94 1.15 0.99 
Modeled ψ1and ψ2 
Known ∗  37.18 27.20 34.99 ~1 0.98 
Mean ∗  34.86 25.96 33.14 0.97 0.98 
Modeled ∗  36.23 22.08 31.31 1.16 0.98 

Slope and R2 from least-square regression between measured and modeled PC 
concentrations were also provided. 
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Figure 5.1 ( a) Rrs(λ) spectra collected from aquaculture ponds in July 2010 and April 
2011, (b) measured phytoplankton absorption coefficients, aφ(λ), using 
filter-pad technique, and (c) measured aCDM(λ). 



www.manaraa.com

 

116 

 

Figure 5.2 (a)  measured using spectrophotometric method, and (b) 
phycocyanin specific absorption coefficients, ∗ , of samples analyzed 
in this study.  

Scatter plot between PC concentration and ∗ 620  is also shown in the inset. 

 

Figure 5.3 Relationship between measured PC and chl-a concentration in the samples.  

Solid and empty circles represent data from 2010 and 2011 respectively. 
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Figure 5.4 Comparison of model retrieved aφ(λ) with pad-measured values at 560, 
620, and 665 nm wavelengths.  
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Figure 5.5 (a) Scatter plot showing empirical relationship between ψ1, 

[achl(665)/achl(620)], chl-a concentration.  

Filled circles are data points from this study; (b) Empirical relationship between ψ1and  
rrs(560)/rrs(665), and (c) empirical relationship between ψ2, [ (665)/ (620)], and 
rrs(620)/rrs(665). 
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Figure 5.6 (a) Comparison of model retrieved 620  with spectrophotometrically 
measured 620 . 
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Figure 5.7 Comparison of a) Model retrieved 620  with measured 620 ; b) 
Estimated PC concentration with measured ones. Solid lines are 1:1 lines.  

Filled circles, squares and empty circles represent estimated PC values using known 
∗ 620 , mean ∗ 620 , and empirically modeled ∗ 620 . 
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Figure 5.8 Scatter plot between ψ1 and rrs(560)/rrs(665).  

Dotted line is the least square fit line. 

 

Figure 5.9  Comparison of a) Model retrieved 620  with measured 620 ; b) 
Estimated PC concentration with measured ones.  

Solid lines are 1:1 lines. Squares and empty circles represent estimated PC values using 
mean ∗ 620 , and empirically modeled ∗ 620 . 
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Figure 5.10 Scatter plot between measured PC concentration and  from 
modeled ψ1 and ψ2.  

Note that intercept of the least square fit line is close to zero unlike the case in Fig. 6b. 

 

Figure 5.11 Relationship between PC:chl-a and relative error of PC estimation. 
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Figure 5.12 Relationship between relative error of PC estimation and relative 
abundance of PC absorption: a) errors from the model using optimized ψ1 
and measured ψ2, and b) errors from the model using modeled ψ1 and ψ2.  

Colors and size of the bubbles indicate the PC concentration. 
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CHAPTER VI 

NORMALIZED DIFFERENCE CHLOROPHYLL INDEX: A NOVEL MODEL FOR 

REMOTE ESTIMATION OF CHLOROPHYLL-A 

6.1 Overview 

In this research, a Normalized Difference Chlorophyll Index (NDCI) has been 

proposed to predict chlorophyll-a (chl-a) concentration from remote sensing data in 

estuarine and coastal turbid productive (case 2) waters. NDCI calibration and validation 

results derived from simulated and MEdium Resolution Imaging Spectrometer (MERIS) 

datasets show its potential application to widely varying water types and geographic 

regions.  A quadratic function (R2 = 0.95, p<0.0001) accurately explained the variance in 

the simulated data for a chl-a range of 1-60 mg m-3. Similarly a twofold calibration and 

validation of chl-a models using MERIS dataset, (chl-a range: 0.9-28.1 mg m-3) yielded 

R2 of 0.9, and RMSE of ~2 mg m-3 respectively. NDCI was applied on images over the 

Chesapeake Bay and Delaware Bay, the Mobile Bay, and the Mississippi River delta 

region in the northern Gulf of Mexico. The newly developed algorithm was successful in 

predicting chl-a concentration with approximately 12% overall bias for all above study 

regions. In case of remote coastal waters with no ground truth data, NDCI can be used to 

detect algal bloom and qualitatively infer chl-a concentration ranges very similar to 

NDVI's application in terrestrial vegetation studies. 
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6.2 Introduction 

Accurate remote estimation of biophysical parameters such as chlorophyll-a (chl-

a) and phytoplankton biomass in turbid productive waters is essential for large-scale and 

multi-temporal studies related to primary production, carbon cycle, biogeochemical 

cycles, and overall inland and coastal water quality. However, it is still a challenge 

because of the presence of non-covarying optically active constituents whose absorption 

features overlap with chl-a. Spectral channels in the blue-green part of the 

electromagnetic spectrum are heavily affected by the presence of constituents such as 

Colored Dissolved Organic Matter (CDOM), detritus, and tripton. Empirical algorithms 

(e.g., OC4v4) that use blue and green spectral channels often provide a relatively accurate 

estimate of chl-a in case 1 waters where the total non-water absorption is dominated by 

phytoplankton, however, do not provide reasonable estimates of chl-a in turbid 

productive waters (O'Reilly et al., 1998). In order to reduce the estimation error of chl-a 

in turbid productive waters, semi-analytical models have also been proposed (Maritorina 

et al., 2002, Gons et al., 2000). However, the success of these semi-analytical models 

depends on the accurate parameterization of the inherent optical properties of the medium 

that often poses a considerable challenge. Magnuson et al. (2004) re-parameterized the 

original semi-analytical model proposed by Maritorina et al. (2002) to make it suitable 

for the Chesapeake Bay and Mid-Atlantic Bight region. They reported that the re-

parameterized model was successful in attributing CDOM absorption in the total 

absorption budget and offered accurate estimation when compared to OC4v4 model and 

the accuracy of chl-a estimation was within 30-50% of the in situ measured values. Even 

though the re-parameterized semi analytical model produced better accuracy than OC4v4, 



www.manaraa.com

 

129 

the uncertainty was still very high. Because of the difficulties in obtaining the 

information for re-parameterization, such as specific absorption coefficient of 

phytoplankton, ∗ , spectral slope of colored dissolved organic matter, , and 

spectral slope of detritus, , alternative approaches have been encouraged to 

improve chl-a estimation in turbid productive waters. Over the past years, numerous 

algorithms have been proposed to quantify chl-a in turbid productive waters using red-

near infrared (NIR) bands and these algorithms can be classified into three primary 

groups such as: 1) two-band empirical (Moses et al. 2009; Tzortziou et al. 2007), 2) three 

or four-band empirical (Dall’Olmo & Gitelson, 2005; Le et al., 2009), and 3) three-band 

semi-analytical (Gons et al., 1999, 2008) models. In this study, accuracy of red and NIR 

based empirical and semi-analytical algorithms has been assessed in geographically 

diverse water bodies and a novel band difference algorithm has been proposed for 

accurately mapping chl-a concentration in turbid productive waters.  

Four algorithms from the list above were selected for further validation and 

examination of their performance and transferability to different water bodies. The 

selected algorithms discussed below are widely applied and unique in their band 

architecture. 

Moses et al. (2009) presented a two-band model (hereafter M09) using red and 

NIR bands to quantify chl-a in turbid productive waters. To match the band configuration 

of MERIS sensor, the conceptual model was designed as: 

 ∝ 665 708  (6.1) 
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They applied M09 on MERIS images over Azov Sea, Russia and reported the 

high accuracy potential of the model to estimate chl-a in turbid productive waters. 

Similarly, Tzortziou et al. (2007) collected an extensive bio-optical dataset to examine 

the relationship between inherent and apparent optical properties in the mid Chesapeake 

Bay, USA. They observed a better relationship (R2=0.54)  between remote sensing 

reflectance (Rrs) ratio at 677 and 554 nm,  Rrs(677)/Rrs(554), and chl-a concentration in 

the bay compared to blue-green spectral band ratios. In this study, this ratio has been 

modified based on the MERIS band configuration, Rrs(665)/Rrs(559) and named it T07 

for further reference. 

 ∝ 559 665  (6.2) 

Dall’Olmo & Gitelson (2005) (hereafter D05) presented a three-band model using 

red and NIR bands. The three-band model architecture was as follows: 

 ∝ 665 708 753  (6.3) 

The three band algorithm was based on several assumptions including, (i) the 

absorption by suspended solids and CDOM beyond 700 nm is approximately equal to 

that at 665-675 nm and the difference between them is very small and can be neglected, 

(ii) the total chl-a, CDOM, and total suspended sediment (TSS) absorption beyond 730 

nm is nearly zero, and (iii) back-scattering coefficient of chl-a is spectrally invariant. 

They reported that D05 was successful to predict accurate estimate of chl-a in turbid 

productive water bodies with wide range of optical complexity. Moses et al.(2009) 

further validated D05 using MERIS data from the Azov Sea and documented that D05 

was able to retrieve chl-a concentration with a RMSE of 5.02 mg m-3 (for a chl-a range: 
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18.37-47.86 mg m-3). Gons et al. (2008) presented a semi-analytical algorithm (hereafter 

G08) for chl-a retrieval using MERIS data which was a modification of the parent 

algorithm (Gons et al., 1999). G08 uses the relationship between inherent optical 

properties and the Rrs at three wavelengths, solves for chl-a absorption at 665 nm, and 

estimates chl-a by dividing achl (665) by the specific absorption coefficient of chl-a, 

∗ 665 . 

 
. ∗ 0.70 0.40 . /0.016 (6.4) 

where bb is the back-scattering coefficient and was expressed as: 

 
. ∗

. . ∗
 (6.5) 

Gons et al. (2008) reported that G08 successfully retrieved chl-a concentration in 

the Laurentian great lakes producing residuals less than 35% of the measured values. 

They also reported that G08 did not perform well in areas with chl-a less than 5 mg m-3 

and even produced some negative values in oligotrophic waters. 

Although, the three-band algorithms, D05 and G08, have excellent predictive 

ability, the biggest challenge of these models is that they require Rrs measurements at 753 

and 775 nm. Based on existing atmospheric correction schemes for turbid productive 

waters, getting reliable estimates of Rrs at these wavelengths is a difficult task. In 

addition, another inherent difficulty of semi-analytical models such as G08 is the use 

of	 ∗ 665 . Any uncertainty associated with ∗ 665  can contribute to 

inaccurate estimates of chl-a. 

After carefully examining the strengths and weaknesses of the above models, our 

goal in this research was to develop an algorithm that can perform better than the existing 
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algorithms. Two of the most important criteria for a successful spectral algorithm 

development include: (1) applicability to satellite data, and (2) transferability to widely 

varying geographic regions without producing significant uncertainties. Both criteria 

have been tested and analyzed in this study as part of the model validation. A novel 

index, Normalized Difference Chlorophyll Index (NDCI) has been proposed, and its 

sensitivity to chl-a concentration has been demonstrated in turbid productive waters. A 

chl-a model using NDCI has been calibrated and validated by analyzing four datasets 

(one simulated and three field datasets) representing unique turbid productive water 

bodies and presented its potential use for chl-a estimation in optically complex waters. 

The purpose of using a simulated data was to test the model performance and sensitivity 

to a wide range of optical parameters in the water.  

NDCI uses Rrs at 665 nm, Rrs(665), and 708 nm, Rrs(708), emulating the Medium 

Resolution Imaging Spectrometer (MERIS) channels. Similar to other turbid productive 

chl-a algorithms, this index uses the information from the reflectance peak centered at 

700 nm which is maximally sensitive to the variations in chl-a concentration in water. 

Similarly, a wide spectral absorption peak between 665 nm and 675 nm is generally 

assigned to the absorption by chl-a pigments. Those two spectral features centered at 665 

nm and 708 nm were selected to develop NDCI and to avoid the confounding influence 

of CDOM and TSS on the water reflectance spectra at shorter wavelengths. Also, as both 

bands are closely located, it is assumed that the CDOM and TSS absorption is similar in 

magnitude. Based on the results from bio-optical modeling in this study, the combined 

range of CDOM and TSS absorptions at 665 nm (0.0193-0.1899 m-1) and 708 nm (0.015-

0.1603 m-1) in the study regions are approximately equal and the difference between them 
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can be assumed as  negligible. Further, following the simplistic concept of normalized 

difference vegetation index (NDVI) applied in vegetation status monitoring; NDCI was 

developed by taking the spectral band difference at 708 nm and 665 nm and normalizing 

by the sum of their reflectance to eliminate any uncertainties in the estimation of Rrs, 

seasonal solar azimuth differences, and atmospheric contributions at those wavelengths. 

NDCI is formulated as: 

 ∝  (6.6) 

The overarching objective of this research was to improve the accuracy of chl-a 

retrieval in turbid productive waters using a simple, easy to implement, intuitive (such as 

NDVI for vegetation), and universal model. Throughout this paper, these criteria have 

been tested using several steps including: (1) developing a  dataset simulating a wide 

range of bio-optical parameters to examine the conceptual model, (2) testing the model 

using an in situ dataset collected from a global bio-optical data archive and corresponding 

MERIS data, (3) evaluating the performance of several existing chl-a algorithms for 

turbid productive waters using the simulated and remotely sensed datasets, (4) applying 

the model in three unique study regions, such as Chesapeake-Delaware Bay, the 

Mississippi River Delta, and the Mobile Bay, and (5) finally and most importantly, 

developing a generalized but practical relationship between NDCI values and chl-a range 

in an attempt to make NDCI intuitive and applicable when/where ground truth data is not 

available.  
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6.3 Data and methods 

6.3.1 Bio-optical modeling 

The simulated Rrs spectra used for the model conception, calibration, and 

validation were approximated by the following method. Irradiance reflectance, R(z,λ), is 

defined as (Morel & Prieur, 1977): 

 , ,

,
, (6.7) 

where, Eu (λ,z) and  Ed (λ,z) are upwelling irradiance (W m-2 nm-1) and downwelling 

irradiance (W m-2 nm-1) at depth (z) in the water column. Gordon et al. (1975) have 

approximated R(0,λ) at the water surface as a function of the in-water absorption and 

scattering coefficients as: 

 0,  (6.8)     

where, bb(λ) is the total backscattering coefficient (m-1); a(λ) is the total absorption 

coefficient (m-1); and f is the proportionality factor that depends on the solar zenith angle 

and light field geometry. Further, Kirk (1984) modeled f as a function of the cosine of the 

solar zenith angle (µ0) of the refracted photons as: 

 μ 0.629μ 0.975 (6.9)       

R(0,λ) is closely related to the spectral remote sensing reflectance, Rrs(λ)  as 

(Carder & Steward, 1985): 

 , 0 ,

,
 (6.10) 
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where, Lw (λ,0) is the water leaving radiance (W m-2 sr-1 nm-1); and Ed (λ,0) is the 

downwelling irradiance (W m-2 nm-1 ) above the air-water interface. For a nadir looking 

sensor, Lw can be estimated from Lu as in Mobley (1999):  

 , 0 , 0  (6.11)   

where, τ is a non-dimensional proportionality factor that relates upwelling radiance 

measured just below the water surface to water leaving radiance. For most remote sensing 

applications, τ can be reasonably approximated as 0.54 (Mobley, 1999). Lu (λ, 0) is the 

subsurface upwelling radiance and for uniform angular distribution, Lu can be formulated 

as (Jerlov, 1968):  

 , 0 , 0 /  (6.15) 

where, Eu(λ,0) is upwelling irradiance (Wm-2 sr-1 nm-1) and Q is the angular distribution 

factor of spectral radiance and assumed to be 4 based on the average solar zenith angle in 

our study area (Morel & Gentili,1996). Finally, combining Eqs. 5.6-5.11, Rrs can be 

written as follows: 

 0.0448  (6.13) 

To model the fluorescence component of Rrs, water leaving radiance due to 

chlorophyll fluorescence at 685 nm (Lw,fl (685)) was modeled as in Gilerson et al. (2007). 

Rrs,fl (685) was estimated as:  

 , 685 ,  (6.14) 
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Based on the Hydrolight (Mobley & Sundman, 2001) simulation as in Gilerson et 

al. (2007) for a clear sky condition, Ed was considered as 1.1 Wm-2 nm-1. Finally, Rrs,fl 

was modeled at every wavelength using a Gaussian peak centered at 685 nm with a 

standard deviation (STD) of 10.6 nm (Mobley,1994). The final Rrs(λ) values were 

modeled as a sum of Rrs estimations from Eq. 6.12 and Eq. 6.13. 

6.3.2 Simulation of Rrs data 

Using the above bio-optical model, two Rrs datasets representing four case 2 water 

bodies such as Mississippi Delta region, Mobile Bay, Chesapeake Bay, and Delaware 

Bay were selected. Further, assuming that there are three optically active constituents in 

the water (i.e., phytoplankton, suspended matter, and CDOM), the total absorption, a (λ) 

coefficients can be written as follows:  

 ∑ , (6.15)      

where, ai are the absorbing components such as water (aw), chl-a (achl), CDOM ( ), 

and non-algal particle ( ). Similarly, total back-scattering coefficient can be written 

as:  

 ∑ ,  (6.16) 

where, bb,i are the back-scattering components such as water (bbw) and total particulate 

matter ( ).  Phytoplankton absorption coefficient was modeled as the product of 

specific absorption coefficient ( ∗ ) and the chl-a concentration (Cchl-a). ∗  values were 

taken from  Ciotti et al. (2002) as a sum of specific absorption coefficient of micro-
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planktons and pico-planktons with different weighting factor, Sf, ranging from 0.1 to 0.5 

that corresponds to typical turbid productive coastal waters (Ciotti et al., 2002). 

 ∗ ∙ ∗ 1 ∙ ∗  (6.17) 

 and , 	values were taken from Pope & Fry (1997). CDOM absorption 

was expressed as a function of the absorption coefficient at 440 nm, aCDOM (440), and a 

slope factor, SCDOM, as follows (Bricaud et al., 1981): 

 440  (6.18) 

Similar to CDOM absorption,  was expressed as an exponentially decaying 

function with respect to the wavelength as: 

 443  (6.19) 

where,  = 0.0123 nm-1 was taken from Babin et al. (2003). 443  was expressed 

as: 

 443 0.031 0.81  (6.20) 

where, 0.031 and 0.81 are the mass-specific  coefficient and Cnap:Cchl-a ratio 

respectively. This relationship explains the observed co-variation between  and Cchl-a 

(Babin et al. 2003). Particulate back-scattering coefficient was expressed as: 

 ,
∗ 550  (6.21) 

where, ,
∗ 550  is the specific back-scattering coefficient of particulate matter (0.0086 

m2g-1) (Kiefer & Reynolds, 1992), y is the spectral slope of bb,p (set to 0 as in Dall’Olmo 

et al., 2006), and Cp is the concentration of particulate matter. 
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Previously published ranges of aCDOM (440) and concentrations of inorganic 

suspended sediment (ISS) resembling each study region were used in the bio-optical 

model (Kutser et al., 2009; Miller et al., 2002; Tzortziou et al., 2007) (Table 6.1). 

Assuming optical similarity, published values from Mississippi Sound have been 

considered for the Mobile Bay. The range of chl-a concentration used for the simulation 

widely varied from 1 to 60 mg m-3.  Concentrations and values of model parameters, such 

as chl-a, ISS, aCDOM (440), and SCDOM were randomly varied at each iteration step to 

mimic the natural variability in the study regions. Rrs data were simulated at 1 nm interval 

from 400 nm to 760 nm (n=200). Rrs measurements were further simulated at each 

MERIS band centers λi, for band 1 to 10, by taking the weighted average of each Rrs 

spectra using the spectral response function (SRF(λ)) of MERIS 

(http://earth.eo.esa.int/pub/ESA_DOC/MERIS_Wavelengths_and_Irradiances_Model200

4.xls) as weights (Eq. 6.20). Finally, the simulated MERIS spectra were used for further 

analysis. 

 
∑

∑
 (6.22) 

6.3.3 Field data 

The concept of NDCI was developed using simulated data, however, field 

datasets acquired from the same geographic regions were used to further validate the 

NDCI and chl-a relationship. The field datasets consisted of chl-a concentrations from 

Chesapeake Bay, Delaware Bay, the river Mississippi Delta region, and the Mobile Bay 

(Fig. 6.1). However, the field data were not used in the simulation because of the absence 

of a wide chl-a range, and the unavailability of other data such as inorganic suspended 
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solid concentration (ISS), aCDOM (λ), and SCDOM  that are required as input to the bio-

optical model. In situ chl-a data from Chesapeake Bay and Delaware Bay (n = 38; 

collection dates: April, 15, 16, and 18, 2008, May 14, 2008) were downloaded from 

SeaWiFS Bio-Optical Archive and Storage System (SeaBASS) archives. Similarly, chl-a 

data for Mississippi Delta region (n=10; collection date: May 19, 2007) were acquired 

from the NASA bio-Optical Marine Algorithm Data (NOMAD) archive. Both SeaBASS 

and NOMAD archives contain high quality bio-optical global datasets which are suitable 

for calibrating and validating ocean color algorithms (Werdell & Baily, 2005). In situ 

data from Mobile Bay were collected and analyzed using high performance liquid 

chromatography (HPLC) (by Hugh MacIntyre, Dolphin Island Sea Lab) (n=8; collection 

date: Nov 07, 2007). The frequency plot of chl-a observation in all field sites is presented 

in Fig. 6.2 and the summary of chl-a measurements, solar zenith and solar azimuth angles 

of the study sites is also summarized in Table 6.2.  

6.3.4 Satellite Data 

Simultaneous observations of full resolution level 2 data acquired by MERIS 

sensor onboard ENVISAT were downloaded using European Space Agency’s client 

EOLI (Earth Observation Link) for NDCI model calibration and validation.  Beam 3.6 

software (Brockmann Consult, Geesthacht, Germany) was used to process and analyze 

the MERIS images. Image data acquired on April 15 2008 (Universal Time Co-ordinates- 

15:43:39.476) over Chesapeake Bay had some cloud cover and was masked for land and 

cloud. However, cloud cover over the Mississippi River Delta region and the Mobile Bay 

was minimal. Corresponding MERIS images over Chesapeake and Delaware Bay was not 

available on August 16, 2008 and therefore, image acquired on August 15, 2008 was 
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used. Images acquired on April 18, 2008 (UTC- 15:49:21.537) and May 14, 2008 (UTC- 

15:32:21.458) over Chesapeake Bay were also used in this study. Similarly, images for 

the Mississippi Delta and the Mobile Bay were acquired on May 19, 2007(UTC- 

16:20:52.509) and November 07, 2007 (UTC-16:15:06.954). 

MERIS level 2 products are atmospherically corrected for normalized water 

leaving reflectance. Corresponding Rrs spectra were extracted from MERIS images for 

the in situ sampling locations and are presented (Fig. 6.3B). Rrs spectra showed high 

variability in magnitude in the visible spectral domain. Maximum values of Rrs were 

observed at the green channel (559 nm) and maximum variability was also occurred at 

559 nm and 620 nm. As expected, Rrs in the blue spectral region showed lower 

reflectance because of high absorption by chlorophylls, CDOM, and non-algal particulate 

matters in the water. A large number of pixels showed negative Rrs at 412.5 and 442.5 nm 

possibly because of over correction for the atmospheric scattering. The spectral shape of 

the average Rrs spectrum were similar to the simulated data (Fig. 6.3A) 

6.3.5 Model calibration and validation 

NDCI model was calibrated and validated using a simulated and a field dataset. A 

one-fold calibration and validation was performed using the simulated dataset, whereas, a 

three-fold calibration and validation was performed using the field dataset. The three-fold 

calibration and validation to the field data was based on three varying parameters 

including (a) solar zenith angle (θs), (b) solar azimuth angle (φs), and (c) geographic 

region. In the first two calibration and validation, the field data sorted out based on solar 

angle parameters (θs , φs) in order to test the robustness of the model to variations 

observed in satellite data because of atmospheric interferences and seasonal changes, and 
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transferability of the model to other similar coast water bodies. In the third calibration 

and validation, the data were sorted out based on geographic region in order to maintain 

the independence aspect of the field data. 

The first calibration and validation dataset was sampled after sorting based on 

descending θs  and further dividing the data into two subsamples, one for calibration 

(n=29) and the other for validation (n=20). Similarly, the second calibration and 

validation was performed after sorting the field data based on descending φs  and further 

dividing into a calibration dataset (n=29) and a validation dataset (n=20). Remote sensing 

reflectance ( Rrs), being an apparent optical property, is prone to vary with any change in 

the light field geometry and atmospheric conditions even though the concentrations of all 

the biophysical variables (TSS, chl-a, CDOM) remain constant in the water column. 

While formulating NDCI, it was hypothesized that a normalized band difference index 

will be less sensitive to any uncertainties because of variations in light field geometry, 

atmospheric effects, and radiometric calibration differences by virtue of its spectral band 

selection and model architecture. In the current scenario, solar zenith (θs)  and solar 

azimuth angles (φs)  have been used as a measure to represent seasonal and spatial change 

in light field as these solar angles change with geographic regions, and with season in a 

geographic region.  

Finally, the third set of calibration and validation was performed by dividing the 

dataset from all study regions into two subsets based on geographic regions. Calibration 

dataset contained all sample points from the Chesapeake Bay and Delaware Bay (n=35), 

whereas, sample points from the Mississippi Delta and the Mobile Bay were used as the 

validation dataset (n=14).  In this way, the model calibrated for a region with a specific 
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set of bio-optical and physical characteristics will be validated for a different region with 

a different set of bio-optical and physical parameters demonstrating the strength and the 

transferability of the algorithm to other coastal regions.  

For the model calibration, best fit functions were calculated based on least-

squares regression analysis. Using the calibrated equations, chl-a concentrations were 

predicted for the validation dataset. The accuracy of the model prediction was assessed 

by comparing the predicted chl-a and the measured chl-a concentration. The comparison 

was expressed in terms of root mean squared error (RMSE), coefficient of determination 

(R2) between measured and predicted chl-a, the slope of the best fit line (m), and the 

mean ratio that was calculated as the average of the ratios of the predicted chl-a values to 

the measured chl-a values. RMSE was computed as: 

 
∑

 (6.23) 

where n is the number of observations,  is the predicted value of chl-a, Y is the observed 

or measured value of chl-a, and k is the number of predictors 

6.4 Results 

6.4.1 Model calibration and validation using simulated data 

Several existing blue-green band ratio algorithms such as OC4 (O’Reilly et al., 

1998, 2000) and two-band red-NIR models (T07, M09) were compared with NDCI 

during model calibration. Three-band models that use Rrs values at 753 nm and beyond 

were not considered for comparison because the absorption coefficients of water and 

phytoplankton available in literature do not produce reliable estimates of Rrs beyond 750 

nm (Kutser, 2006). Model calibration results using the blue-green band ratio showed high 
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sensitivity to the changes in aCDOM  and anap.. Therefore, developing a single empirical 

relationship using blue-green band ratios during model calibration was not possible 

because of the absence of a common trend line for all study areas (not shown).  In 

contrast, red-NIR based models showed a single trend for all study areas indicating their 

insignificant sensitivity to the changes in aCDOM and anap.  

Various linear and nonlinear trend lines were fitted to the data and best outputs 

were finalized and reported for all models (Table 6.3). Relationship between NDCI and 

chl-a was essentially nonlinear. However, logarithmic and power trend lines could not be 

fitted to the data because of the negative NDCI values. An exponential function with two-

parameters explained 93% of variance in the data (R2=0.93, standard error of the estimate 

(STE) =4.38 mg m-3 of chl-a, p<0.0001) where as a second order polynomial produced 

the highest R2 and lowest estimation error (R2=0.95, STE=3.62 mg m-3 of chl-a, 

p<0.0001) in the simulated dataset (Table 6.3). Quadratic polynomial equation was 

finally selected as the final NDCI-chl-a equation because of higher R2 and lower STE. 

Unlike NDCI, linear relationships were found between the two-band models and chl-a 

during model calibration. STE and R2 for M09 were 3.76 mg m-3 and 0.95 (p<0.0001) 

respectively. T07 showed a weak relationship with chl-a in the model calibration stage 

with STE and R2 of 10.76 mg m-3 and 0.61 (p<0.0001) respectively.  

All calibrated models were examined for their predictive ability and 

transferability to other geographic regions (Table 6.4). Using the calibration equation, 

chl-a values were predicted for an independently modeled dataset and were compared 

with actual chl-a concentrations. NDCI produced a root mean squared error (RMSE) of 

4.83 mg m-3, whereas, M09 and T07 produced RMSE of 5.26 and 21.78 mg m-3 
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respectively. NDCI produced the most accurate prediction showing highest coefficient of 

determination (R2=0.93) between actual and predicted chl-a and the slope of the 

regression line was close to 1 (m=1.05). On the simulated dataset, M09 performance was 

similar to NDCI with R2=0.92 and m=1.07 and T07 model predicted significantly 

inaccurate values. The residuals from NDCI and M09 validation did not reveal a trend of 

over or under estimation; however, residuals from T07 had a clear trend of over 

estimation (not shown). 

6.4.2 Model calibration and validation using field data 

Two sets of calibration/validation were performed on selected models based on 

the solar zenith and solar azimuth angles on MERIS data from all study regions (Table 

6.3). Similar to the simulated data calibration results, in the field data calibration based 

on solar zenith angle, NDCI showed a strong relationship with chl-a concentration 

(quadratic function) producing R2 and STE of 0.90 and 2.49 mg m-3 respectively 

(p<0.0001) (Fig. 6.4). A two parameter-exponential trend line was also fitted that 

explained 87% of variance in the data (R2=0.87, STE=2.7 mg m-3 of chl-a, p<0.0001). 

However, quadratic polynomial equation was finally selected because of higher R2 and 

lower STE. M09 performed as the second best model with R2 of 0.82 and STE of 3.24 mg 

m-3 (p<0.0001), however, the performance gap between NDCI and M09 was found to be 

higher in field data compared to the simulated data. Unlike the expected linear 

relationship between D05 and chl-a (Dall’Olmo & Gitelson, 2005), a quadratic function 

explained the maximum variance in the data (R2 =0.56, p<0.0001) producing a STE of 

5.22 mg m-3. T07 model produced the least R2 (0.48) and highest STE value (5.53 mg m-

3, p<0.0001). 
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All four models plus G08 and MERIS level-2 chl-a product (Algal-2) were 

validated using the corresponding validation dataset (Fig. 6.5; Table 6.4).  G08 was not 

parameterized and the chlorophyll equation from Gons et al. (2008) was used for 

validation.  NDCI performed the best with the least RMSE (1.87 mg m-3), high R2, m≈1, 

and no clear residual trend of over or under-estimation. T07 produced the highest RMSE 

(10.01 mg m-3) and the least R2. Performance of the 3-band model, D05, was close to 

NDCI in the validation stage producing RMSE of 1.97 mg m-3and M09 showed a clear 

trend of over estimation (Fig. 6.5). G08 had a RMSE of 4.06 mg m-3 and showed a trend 

of overestimation for all predictions greater than 7 mg m-3. MERIS product (Algal-2) 

showed excellent prediction for chl-a concentration below 13 mg m-3 with a few 

exceptions (Fig. 6.5).  

Very similar trend in results were observed with the second calibration dataset 

based on solar azimuth angle (Table 6.3). NDCI showed the strongest relationship with 

chl-a (R2=0.90, STE= 2.11 mg m-3, p<0.0001), whereas, M09 explained 82% variation in 

the data and produced a STE of 2.61 mg m-3 (p<0.0001). Neither a linear nor a quadratic 

function explained the relationship between D05 and chl-a very well, therefore the R2 

was low and the STE was high. Similarly, T07 model showed weakest relationship with 

chl-a producing lowest R2 and highest STE values (p=0.0134). Validation results showed 

that the MERIS Algal-2 chl-a product produced the least RMSE (1.69 mg m-3), however, 

the R2 between predicted and actual was low and the regression slope was significantly 

lower than 1 (Table 6.4). In contrast, NDCI produced a RMSE of 2.04 mg m-3 with the 

regression slope near 1.  D05 and G08 produced a RMSE of 2.46 and 3.56 mg m-3 

respectively. Also, G08 produced high estimation errors for low chl-a values 
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(oligotrophic waters) with five negative prediction. Similar to the previous validation, 

T07 model produced the highest RMSE and proved to have the least predictive ability. 

Finally, the last set of calibration and validation was performed on the datasets 

those were sampled based on geographic regions. Similar to the previous calibration 

results, NDCI showed the strongest relationship with measured chl-a (R2= 0.72, STE = 

2.15, p <0.0001) and the weakest relationship was found between T07 and chl-a 

(R2=0.01, p=0.439) (Table 6.3, Fig. 6.6). Note that the third validation dataset contained 

four points with chl-a concentration higher than the chl-a concentration range used in the 

calibration. Therefore, the validation results for all models are shown in two ways 

including (a) data points within the calibration range (values outside the brackets) and (b) 

the entire dataset (values inside the bracket) (Table 6.4, Fig. 6.7). Validation results show 

that NDCI was successful predicting chl-a  concentration with highest accuracy 

producing a RMSE of 1.43 (2.37) mg m-3. The R2 between the measured and predicted 

chl-a was 0.94 with a regression slope of 0.88 (0.91). Algal-2 showed maximum 

prediction error with two-fold over estimation. It is also evident that, unlike other 

calibrated models, predictions by the NDCI equation outside its calibration range was 

also very accurate and the equation can be reliably used to predict chl-a up to 28.17 mg 

m-3 (Fig. 6.7). 

It should be noted that in the simulated and the first field dataset, NDCI showed 

the most accurate predictive ability overall with no trend in residuals (Fig. 6.8). However, 

in the second validation dataset three different models performed best in three different 

categories. G08 produced the highest R2, Algal-2 produced the least RMSE, and NDCI 

produced a regression slope closest to 1. Similarly, NDCI showed excellent prediction in 
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the third validation dataset producing lowest RMSE, highest R2 between predicted and 

actual chl-a and m close to 1. However, if all the three validation parameters are 

considered simultaneously, NDCI showed overall better predictive ability (Table 6.4, Fig. 

6.8). Thus, the three-fold calibration resulted three sets of chl-a equations with 

coefficients very close to each other. The difference among them causes minimal impact 

on the prediction accuracy of the models. It has been verified by applying all three NDCI 

equations on an independent validation dataset (validation dataset 3) and the results 

shown are very encouraging. All three equations produced a RMSE very close to 2.37 mg 

m-3 with a STD of 0.127 mg m-3 mg m-3 of chl-a (not shown). 

6.4.3 Chlorophyll mapping using MERIS data 

MERIS images acquired on April 15, 2008 were selected for the Chesapeake and 

Delaware Bay for mapping spatial distribution of chl-a. Image preprocessing steps 

included georeferencing and land and cloud masking. Pixels with inaccurate reflectance 

values (mostly negative values) and Open Ocean or case 1 areas were masked out . NDCI 

chl-a equation generated from the first calibration dataset (based on solar zenith) was 

applied on MERIS images from Chesapeake and Delaware Bay, Mississippi Delta region, 

and the Mobile Bay to prepare chl-a distribution maps. As shown in validation results, 

NDCI was successful in predicting chl-a concentration with a 12% overall bias for all 

regions (Table 6.5). chl-a estimation accuracy for Chesapeake Bay and the Mississippi 

Delta were within 5-7 % of the measured in situ values, whereas, the bias in Mobile Bay 

was 32% (Table 6.5). Overall, MERIS derived chl-a distribution maps were consistent 

with the published chl-a levels for the Chesapeake Bay and the Mississippi Delta. The 

maximum chl-a concentration value mapped on the images was 59.08 mg m-3 (Figs. 9 
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and 10). For further analysis, all case 2 water pixels were sampled and chl-a values were 

analyzed. Frequency plot of the mapped chl-a in Chesapeake and Delaware Bay shows 

that the chl-a concentration in the majority of the bay was within 7-25 mg m-3 on July 15, 

2008 (Figs. 9, 10C). In the upper Chesapeake Bay and along the shorelines, chl-a 

concentration was comparatively higher. All tributary rivers in the middle Bay region 

also showed higher chl-a concentration (Fig. 6.9A).  

Significant portions of the MERIS image acquired on May 19, 2007 covering 

Mississippi Delta were of poor quality. Most of the pixels were flagged by MERIS 

atmospheric correction scheme with inaccurate reflectance measurements and therefore 

masked out. The maximum chl-a concentration observed in the map was 58.9 mg m-3 

(Fig. 6.9B) and the frequency plot revealed that most of the pixels had chl-a values 

within 10-30 mg m-3 (Fig. 6.10B). High concentration of chl-a was observed in the 

eastern boundary of the delta.  

The highest level and the range of frequently occurring chl-a concentration 

recorded on the Mobile Bay map derived from the cloud free MERIS image were 58.46 

mg m-3 and within 7-20 mg m-3 respectively (Fig. 6.10C). As expected, north-shore of the 

bay showed the highest chl-a concentration.  Because the Mobile River and the Tensaw 

River drains nutrient-rich water which stimulates the growth of phytoplankton and 

primary production making it the most productive part of the estuary.  

6.5 Discussion 

6.5.1 Algorithm performance 

Accurate quantification and mapping of chl-a concentration in turbid productive 

waters using remote sensing data can create enormous opportunities for biogeochemists 
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and climate scientists to understand the functioning of global nutrient cycles. As 

discussed earlier, chl-a mapping in turbid productive waters is often challenging because 

of the effect of other optically active constituents such as CDOM, detritus, and mineral 

particles whose concentration do not co-vary with chl-a (Morel & Prieur, 1977). 

Performances of NDCI and M09 model on the simulated calibration dataset were very 

similar although the standard error of the estimation for NDCI was less than the M09 

model. However, NDCI produced higher R2 and less STE than the M09 in the field 

dataset. Both algorithms outperformed T07 at the calibration stage. The simulated dataset 

was produced by varying all possible bio-optical parameters mimicking the natural 

variations in the Chesapeake Bay, Mississippi Delta, and the Mobile Bay. The basic 

difference between the two datasets was the possible existence of the remnant 

atmospheric contamination in the field dataset. This implies that M09 is probably more 

sensitive to the atmospheric parameters than NDCI and thus produced lower R2 and 

higher STE with the field dataset. Since T07 uses a green channel at 560 nm, it is highly 

sensitive to CDOM and detritus in the water and thus produced the highest STE and 

RMSE in all stages of calibration and validation (Table 6.3 and 6.4). 

Consistent performance of NDCI among all models in all study regions was 

evident from the lowest STD of the mean ratio of 0.29 (Table 6.5). In contrast, MERIS 

Level2 chlorophyll product (Algal-2) performed poorly in all study regions with highest 

STD of 0.65. NDCI also produced the least bias, e.g., 7% and 15% in the Cheasepeake-

Delaware Bay and in the Mississippi Delta respectively. Similarly, NDCI produced a 

mean ratio of 1.32 with the lowest STD of 0.28 in the Mobile Bay (Table 6.5). 
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6.5.2 Chlorophyll mapping using MERIS data 

Rrs spectra sampled from the MERIS images were very similar in shape but higher 

in magnitude when compared to some of the published spectra from the same regions 

(Darecki et al., 2003; Dall’Olmo & Gitelson, 2005, Moses et al., 2009). This is because 

of the differences in the interpretation of Rrs. For example, Simis (2006) considered 

normalized water leaving reflectance, the radiometric quantity available from MERIS 

Level 2 products, N , as an equivalent of Rrs. However, if we notice the formulation 

of both radiometric measurements, N is a product of Rrs and a constant, π, which 

could be the reason of higher magnitude of sampled spectra from MERIS images. Most 

of the spectra from the Chesapeake Bay exhibited an absorption feature centered at 620 

nm (MERIS channel 6) which implies the presence of phycocyanin in the bay waters. 

Phycocyanin is widely accepted as a characteristic photopigment in cyanobacteria. Thus, 

the above mentioned distinct optical signature implies abundance of cyanobacteria in the 

Chesapeake Bay during summer months. Spectra from the river Mississippi Delta region 

and the Mobile Bay lacked this optical feature.  In all study regions, some pixels 

produced extremely inaccurate estimation of chl-a (extreme negative and positive 

values). Reflectance spectra were randomly extracted from those extreme pixels and 

analyzed. All spectra showed unusual spectral shape and negative reflectance values at 

several spectral channels (Fig. 6.11). Those contaminated pixel values are believed to be 

originated from inaccurate atmospheric correction scheme. Those contaminated pixels 

were masked out from the final chlorophyll map products.  
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6.5.2.1 Chl-a and NDCI relationship 

One of the biggest advantages of NDCI is that its range varies between -1 to +1 

for areas with no cloud cover and adjacency and bottom effects. Therefore, qualitative 

chl-a mapping (such as NDVI for vegetation) and bloom detection using satellite data is 

possible for remote areas where field data is unavailable or unusable. Further analysis of 

the relationship between NDCI and chl-a helped us to associate an approximate chl-a 

range with certain NDCI values which has tremendous application and will make 

mapping of chl-a more accurate for remote areas. Based on the absorption properties and 

the spectral band structure of NDCI, in optically clear water bodies NDCI is expected to 

hold values closer to -1. NDCI values in water bodies with moderate to high algal 

biomass are expected to vary in the range of -0.3 to close to 1. In case of algal blooms 

with surface scum on water bodies, NDCI values would vary within a range of 0.5 to 1 

(Table 6.6). To reinforce the validity of the NDCI and chl-a range relationship, MERIS 

images of two entirely different areas: 1) a mesotrophic water body (Lake Pontchartrain, 

LA, USA), and 2) an eutrophic inland water body (Lake Apopka, FL, USA) were 

considered. Lake Pontchartrain is a large, shallow, oligohaline, and semienclosed estuary 

located in southeastern Louisiana, USA. MERIS image acquired on October 14, 2010 is 

shown in true color composite and corresponding NDCI map is also shown (Fig. 6.12A 

and B). NDCI values ranged between 0.4 to around 0 qualitatively suggesting chl-a 

concentration below ~20 mg m-3 which is evident from the true color composite (Fig. 

6.12A and B). On the other hand, lake Apopka is a large (surface area = 124 km2), 

shallow (mean depth=1.7m), hyper eutrophic inland lake located in central Florida, USA 

and notorious for high nutrient concentrations and phytoplankton biomass (Carrick & 
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Schelske, 1997). During summer months (April-July), chlorophyll concentration in the 

lake Apopka reaches as high as 105 mg m-3 (Carrick & Schelske, 1997). MERIS image of 

the lake acquired on April 29, 2010 is shown in true color and along with the 

corresponding NDCI map (Fig. 6.12C and D). The true color composite shows a severe 

phytoplankton algal bloom in the lake that gives the lake water a deep green hue such as 

terrestrial vegetation. Most frequently occurring NDCI values in the lake varies from 0.4 

to 0.6 implying a severe bloom condition in the lake corresponding very well with data 

from literatures. Similarly, severe algal bloom was evident in the Lake Harris and the 

Lake Eustis in the same MERIS image (Fig. 6.12C).      

6.5.2.2 Possible sources of estimation error 

Errors associated with atmospheric correction of the MERIS imageries produced 

extreme negative and positive estimations of chl-a over a few pixels in all study regions. 

In ocean color remote sensing studies, accuracy of the atmospheric correction scheme 

controls the accuracy of the mapped biophysical variable because the errors from the 

atmospheric correction stage are propagated to the final product. Based on the spectral 

band architecture of NDCI, it is clear that it would predict higher chl-a values upon 

increase in the difference between Rrs(708) and Rrs(665). Any disproportionate increase 

or decrease in reflectance at 665 and 708 nm creates inaccurate estimations of chl-a. For 

example, pixels with disproportionate increase in reflectance at 665 nm as compared to 

708 nm will produce  extreme negative values ; similarly disproportionate increase in 

reflectance at 708 nm will estimate extreme positive values of chl-a. 
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Seven in situ data points sampled from the Chesapeake and Delaware Bay on July 

16, 2008 did not have corresponding MERIS image and used MERIS reflectance product 

from July 15, 2008. Next day image was used based on the assumption that the overall 

concentration and spatial distribution of biomass does not change within a day. A similar 

assumption has also been made while using MERIS data previously (Gons et al., 2008; 

Moses et al., 2009). In reality, this assumption might not hold true as the water 

circulation in estuarine and coastal environment is very dynamic in nature. This might 

have caused some uncertainties in model calibration and validation.  

6.6 Conclusion 

A new index, NDCI has been proposed to predict chl-a concentrations in optically 

complex turbid productive waters from remotely sensed data. Accuracy and potential 

applicability of the model has been assessed by extensively calibrating and validating it 

on: (1) simulated, and (2) MERIS data representing three unique study areas with a wide 

range of trophic status and optical complexity.  The results presented in this research 

illustrate the potential of NDCI to quantify chl-a concentration when used with remote 

sensing reflectance data from MERIS sensor. A quantitative interpretation of NDCI 

values has also been analyzed and presented that could be potentially useful for remote 

areas with no field data availability. This makes NDCI widely applicable to coastal 

waters as NDVI to terrestrial vegetation.  
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Table 6.1 Ranges of aCDOM (440) (m-1), SCDOM and ISS (mg l-1) from all study 
regions used in the bio-optical modeling of Rrs(λ). 

Study Regions aCDOM (440) (m-1)     SCDOM ISS  (mg l-1) 

Mississippi River Delta    0.05-0.07     0.016       2-5 
Chesapeake Bay and Delaware Bay    2.0-5.0     0.016       5-10 
Mississippi Sound/Mobile Bay    3.13-4.27     0.016       2-5 

 

Table 6.2 Descriptive statistics of chl-a (mg m-3), solar zenith and solar azimuth 
angles in the study regions.  

Parameters Min Max Average 
Mississippi Delta, 19th May 2007 (n = 6) 
Chl-a (mg m-3) 14.351 28.175 21.042 
Solar Zenith Angle  23.303 23.393 23.349 
Solar Azimuth Angle 108.306 108.709 108.495 

Chesapeake Bay and Delaware Bay (n = 35) 
Chl-a (mg m-3) 0.903 16.061 7.255 
Solar Zenith Angle 26.958 34.196 31.492 
Solar Azimuth Angle 131.943 144.597 140.914 

Mobile Bay (n = 8) 
Chl-a (mg m-3) 4.208 6.395 5.256 
Solar Zenith Angle 50.353 50.577 50.471 
Solar Azimuth Angle 154.587 154.915 154.807 

All angular measurements are in degree. 
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Table 6.3 Model calibration: all model parameters including a0, a1, and a2 with 
corresponding standard error of estimate (STE) are provided; In case of 
linear regression, a0 and a1 correspond to intercept and slope of the fitted 
equation.  

Indices a0 a1 a2 R2 Adj. R2 STE of estimate P 

Simulated Dataset (n = 100) 

NDCI 42.197 236.5 314.97 0.95 0.95 3.62 <0.0001

M09 -64.055 106.335 * 0.95 0.95 3.76 <0.0001

T07 -39.739 102.717 * 0.61 0.61 10.76 <0.0001

        

Field Dataset (Solar Zenith Angle, n = 29) 

NDCI 14.039 86.115 194.325 0.90 0.89 2.49 <0.0001

M09 -15.617 31.133 * 0.82 0.81 3.24 <0.0001

D05 14.07 177.56 808.03 0.56 0.52 5.22 <0.0001

T07 -1.832 26.56 * 0.48 0.47 5.53 <0.0001

        

Field Dataset (Solar Azimuth Angle, n = 29) 
NDCI 14.279 79.607 181.45 0.90 0.90 2.11 <0.0001

M09 -15.992 31.196 * 0.85 0.84 2.61 <0.0001

D05 14.15 156.88 769.86 0.49 0.45 4.93     0.001 

T07 4.643 15.473 * 0.20 0.17 6.08 0.0134 

 

Field Dataset (Chesapeake Bay and Delaware Bay, n=35) 
NDCI 13.55 87.99 212.6 0.72 0.7 2.15 <0.0001

M09 -8.88 20.96 * 0.59 0.58 2.57 <0.0001

D05 11.52 136.13 666.46 0.43 0.4 3.09 <0.0001

T07 6.0 3.164 * 0.01 0.0 4.02   0.4394 

* Not Applicable 

Coefficient of determination (R2), adjusted R2 and p values of the regression models are 
also provided. 
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Table 6.4 Three-fold model validation results: root-mean-square-error (RMSE) in mg 
m-3, coefficient of determination (R2), and the slope of the regression line 
(m) are reported for all models.  

Indices RMSE (mg m-3) R2 m 

Simulated Dataset (n = 100)  

NDCI 4.83 0.93 1.05 
M09 5.26 0.92 1.07 
T07 21.78 0.26 0.57 
  
Field Dataset (Solar Zenith Angle, n = 20)  
NDCI 1.89 0.80 1.005 
M09 3.27 0.80 1.115 
D05 1.97 0.81 0.795 
T07 10.013 0.54 -0.544 
G08 4.066 0.83 0.574 
MERIS 5.856 0.74 0.403 
    
Field Dataset (Solar Azimuth Angle, n =16)  
NDCI 2.04 0.34 0.64 
M09 3.08 0.31 0.22 
D05 2.46 0.06 0.34 
T07 8.01 0.07 0.09 
G08 3.56 0.48 0.22 
MERIS 1.69 0.33 0.44 
    
Field Dataset (Mobile Bay and Mississippi Delta, n =14) 
NDCI 1.43 (2.37) 0.94 (0.92) 0.88 (0.91) 
M09 2.82 (5.17) 0.92 (0.94) 0.49 (0.45) 
D05 2.69 (6.49) 0.91 (0.62) 0.51 (0.45) 
T07 5.49 (10.08) 0.53 (0.04) -0.06 (-0.01) 
G08 4.95 0.92 1.43 
MERIS 7.3 0.94 2.29 

The RMSE, R2, and m values of the predictions within the calibrated chl-a range (values 
outside the brackets) and the RMSE, R2, and m values of the entire dataset (values inside 
the bracket) are provided. 
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Table 6.5 Comparison of mean ratio (STANDARD DEVIATION) of modeled and 
measured chl-a for all field regions combined, Chesapeake Bay, Mobile 
Bay, and Mississippi Delta region. 

Models All Regions Chesapeake and
Delaware Bay 

Mobile Bay Mississippi Delta

NDCI 1.12 (0.29) 1.07 (0.28) 1.32 (0.28) 0.95 (0.12) 
665 708  1.47 (0.42) 1.31 (0.38) 1.76 (0.36) 0.93 (0.11) 

3-Band 1.17 (0.31) 1.09 (0.29) 1.33 (0.30) 0.81 (0.22) 
560 665  2.20 (1.60) 1.48 (1.52) 3.52 (0.62) 0.70 (0.15) 

G08 1.26 (0.43) 1.30 (0.38) 1.17 (0.54) 1.26 (0.16) 
MERIS 1.11 (0.65) 1.31 (0.70) 0.74 (0.30) 1.46 (0.43) 

Mean ratio= average of the ratios of the predicted chl-a values to the measured chl-a 
values. 

 

Table 6.6 Qualitative comparison between NDCI and chl-a concentration from all 
study regions. 

NDCI range Chl-a range (mg m-3 )   

< -0.1 < 7.5 
-0.1 to 0 7.5-16 
0 to 0.1 16-25 
0.1 to 0.2 25-33 
0.2 to 0.4 33-50 
0.4 to -0.5 > 50 
0.5 to 1 Severe bloom 
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Figure 6.1 Location map of data points used in the present study.  

(A) Chesapeake Bay and Delaware Bay, (B) River Mississippi Delta region in the 
northern Gulf of Mexico, and (C) Mobile Bay. 
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Figure 6.2 Frequency histogram of surface chl-a concentration (mg m-3) measured 
from Chesapeake and Delaware Bay, Mississippi Delta region, and Mobile 
Bay. 
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Figure 6.3 Average Rrs spectra derived from (A) the simulated dataset (n=200), (B) 
MERIS images of the study regions (n=49).  

Y-error bars are the one STD of Rrs at MERIS band centers. 
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Figure 6.4 Calibration plots from the first calibration dataset that was sampled based 
on solar zenith angle:  

(A) NDCI, (B) M09, (C) D05, and (D) T07. 
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Figure 6.5  Validation plots from the first validation dataset that was sampled based 
on solar zenith angle: (A) NDCI (B) M09, (C) D05, (D) G08, (E) T07, and 
(F) MERIS case 2 chl-a product (Algal-2).  

Straight lines on the plots are the 1-to-1 lines. 
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Figure 6.6 Calibration plots from the third calibration dataset that was sampled based 
on geographic region:  

(A) NDCI, (B) M09, (C) D05, and (D) T07. The calibration dataset contained data points 
from the Chesapeake Bay and Delaware Bay.  
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Figure 6.7 Validation plots from the third validation dataset that was sampled based 
on geographic region:  

(A) NDCI (B) M09, (C) D05, (D) G08, (E) T07, and (F) MERIS case 2 chl-a product 
(Algal-2). Validation dataset contained data points from the Mobile Bay and the River 
Mississippi Delta. Solid circles represent the predictions outside of the calibrated chl-a 
range. Solid and dashed lines are the 1:1 lines for the predictions inside and outside of the 
calibrated chl-a range respectively. RMSE of the predictions within the calibrated chl-a 
range (values outside the brackets) and the RSME of the entire dataset (values inside the 
bracket) are provided. 
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Figure 6.8 Box plots showing residuals from three fold validation, (A) dataset based 
on solar zenith angle, (B) dataset based on solar azimuth angle, and (C) 
dataset based on geographic regions of all models such as (1) NDCI, (2) 
M09, (3) D05, (4) T07, (5) G08, and (6).  

MERIS chl-a product (Algal-2). The dotted lines inside boxes are the mean lines. 
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Figure 6.9 (A) Spatial distribution of chl-a map in Chesapeake Bay, upper Bay: north 
of 39oN, mid-Bay (37.5oN -39oN), and lower-Bay (south of 37.5oN).  

Delaware Bay is located in the north-east corner, (B) Spatial distribution of chl-a in 
Mississippi delta region (pixels with no data were shown in white), and (C) in the Mobile 
Bay. Light green patches in the figure are clouds and the black and blue color represents 
land and open oceans respectively. Concentration of chl-a are in mg m-3. 
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Figure 6.10 Relationship between NDCI range and chl-a concentration at three unique 
case 2 water bodies. (A) Chesapeake Bay, (B) Mississippi Delta, and (C) 
Mobile Bay. 
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Figure 6.11 Typical reflectance spectra of contaminated pixels in MERIS Level 2 
reflectance product.  

(A) Spectra that produced extreme negative chl-a concentration, and (B) Spectra that 
produced extreme positive predictions. 
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Figure 6.12 (A) True color MERIS image of Lake Pontchartrain, LA, USA acquired on 
October 14, 2010, (B) Corresponding NDCI image, (C) True color MERIS 
image of Lake Apopka, Lake Harris, and Lake Eustis, FL, USA, acquired 
in April 29, 2010 (White color represents pixels with no data), and (D) 
Corresponding NDCI image.   

Location maps are provided in insets.  
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CHAPTER VII 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

7.1 Conclusions 

This dissertation investigates the potential of remote sensing techniques to 

quantify cyanobacterial pigment concentration, e.g. chlorophyll-a (chl-a) and 

phycocyanin (PC), and develops empirical and quasi analytical algorithms for effective 

monitoring of cyanobacterial algal blooms using remotely sensed data. The major 

contributions from the dissertation are provided below. 

Empirical algorithms using reflectance band ratios, Rrs(708)/Rrs(600) and 

Rrs(708)/Rrs(620), were developed to quantify phycocyanin (PC) concentration in 

cyanobacteria. Model outputs were compared with the performance of a semi-analytical 

PC algorithm (Simis et al., 2005). Empirical models produced lower estimation errors as 

compared to the semi-analytical model in our dataset. Mean relative errors (RE) of 

Rrs(708)/Rrs(600) and Rrs(708)/Rrs(620) models were 25.4% and 21.6% respectively. 

However, the median RE of Rrs(708)/Rrs(600) (~20%) was 2% lower than the 

Rrs(708)/Rrs(620) model. Values of model parameters γ and δ used in the semi-analytical 

algorithm (Simis et al., 2005) drastically changed in our study region. Since the model 

parameters hold a high order of importance in the algorithm because of their critical role 

in retrieving aφ(620) and aφ(665) values, they should not be treated as constants, as in 

Randolph et al. (2008) and Hunter et al. (2010), and transferred to other study regions 
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with considerably different optical conditions. The biggest challenges of the semi-

analytical algorithm is to find the appropriate values of γ and δ for new study regions or 

even in the same region but at a different time period. In cyanobacteria dominated 

hypereutrophic waters, variability in  ∗ 620  and uncertainty in the value of ε, that 

relates achl(665) with achl(620), could cause erroneous retrieval of PC concentrations. 

In order to address the limitations/challenges with empirical and semi-analytical 

approach, quasi-analytical approach was used to retrieve aφ(620) and aφ(665) from Rrs(λ). 

The QAA algorithm has been extensively calibrated and validated using simulated and 

field data in different geographic regions (Lee et al., 2002; Lee et al., 2004; Le et al., 

2009, Craig et al., 2006; Zhu et al., 2011). Accuracy of QAA inversion is quite promising 

in clear waters with at(440)<0.3m-1. In one of the previous studies carried out using field 

data, percent error of at(λ) retrieval was 6.9% in clearer waters and the retrieval error 

increased to 10.3% for less clear waters with at(440) ranging from 0.025-2.3 m-1(Lee et 

al., 2002). In another study, QAA algorithm successfully retrieved at(λ) in turbid 

productive waters of Taihu Lake, China (where at(440) approaches ~12.0 m-1)  with an 

average error of 8.95% within 400 to 700 nm wavelength range (Le et al., 2009). 

However, algorithm performance was not satisfactory in highly turbid and productive 

waters encountered in our study region where at(443) approaches ~47.0 m-1and aφ(443) 

contributes >54% of at(443). Therefore, the algorithm was parameterized using an 

extensive dataset comprising in situ radiometric measurements, absorption coefficients of 

phytoplankton, CDOM, detritus, and pigment data from highly turbid and cyanobacteria 

dominated aquaculture ponds. After parameterization, the algorithm retrieved at(λ) values 

with a percent error of ~15-24 %  and an average error of 19.87% within a wavelength 
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range of 413-665 nm. Similarly, percentage error for phytoplankton absorption 

coefficient, aφ(λ), varied from 16.94-34.15 % within 413-665 nm range and the average 

error was 23.93%. Results from this research show that the reference wavelength in the 

QAA should be moved to 708 nm for retrieving at(λ0). In eutrophic to hypereutrophic 

waters, at(λ0) should not be assumed as aw(λ0); rather at(λ0) should be retrieved as shown 

in the newly parameterized model (Mishra et al., 2012). For the first time, this research 

documents bio-optical inversion in such cyanobacteria dominated hypereutrophic waters. 

The newly parameterized QAA was used to retrieve aφ(665) and aφ(620) and 

further decomposed the aφ(620) to obtain PC absorption at that wavelength, 620 . 

Two new coefficients ψ1 [achl(665)/achl(620)] and ψ2, [aPC(665)/aPC(620)] were 

introduced for the decomposition of aφ(620) using an algebraic method. Mean RE of 

aPC(620) retrieval was ~10% when optimized values of ψ1 and measured values of ψ2  

were used (representing an ideal case). Similarly, mean RE of PC prediction was ~10% 

and 22.32% when sample specific ∗ 620  and the mean ∗ 620  were used. From a 

practical point of view, when modeled values of ψ1 and of ψ2 were used, mean RE of 

aPC(620) and PC retrieval increased to ~28% and 36% respectively. It should be noted 

that the retrieval accuracy obtained in this study using the quasi-analytical PC algorithm 

is far superior to the semi-analytical PC algorithm accuracy reported in Simis et al. 

(2005). The semi-analytical algorithm produced an average error of 19.7% when sample 

specific model coefficients (γ, δ, and ε) and sample by sample ∗ 620  was used 

(Simis et al., 2005). However, the errors were extremely high with increasing 

overestimation for the samples with lower PC concentration when fixed values of γ, δ, ε, 

and ∗ 620  were used (not reported).  
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Finally, the absolute relative error (ARE) (%) of PC estimation from all models 

including empirical models, semi-analytical, and quasi-analytical algorithms were 

compared (Table 7.1, Fig. 7.1). Errors from all models were relatively higher for samples 

with PC concentration < 250 mg m-3 as compared to samples with higher PC values. 

Overall, empirical models produced relatively better accuracy, where mean and median 

ARE were within ~20 and 25%. However, errors from the empirical models should not 

be directly compared with errors from other models because the validation analysis for 

the empirical models used only 9 points, whereas, all data points were used in validation 

of other algorithms. Semi-analytical algorithm produced the largest amount of error 

among all. The mean and median errors for the semi-analytical algorithm were 45% and 

73% respectively. Median ARE from QAA decreased from ~26% to 24% when modeled 

values of ∗ (620) were used instead of a mean ∗ (620) (Table 7.1).  

A chlorophyll-a (chl-a) threshold is often used to monitor cyanobacteria 

whenever remote estimation of PC is not feasible. World Health Organization uses a 

guideline of approximately 50 mg m-3 of chl-a in cyanobacteria as a moderate health 

warning level; which is equivalent to a PC concentration of about 50-100 mg m-3 based 

on an average intercellular PC:chl-a ratio of 1-2 (WHO, 2003). PC:chl-a ratio can also be 

used as an indicator of cyanobacterial abundance and a threshold of this ratio may also be 

used to decide when PC retrieval may be erroneous. Therefore, an index, normalized 

difference chlorophyll index (NDCI), was proposed to predict chl-a concentration from 

remote sensing data in estuarine and coastal turbid productive (case 2) waters. The model 

was conceptualized using a large simulated dataset. Further, it was calibrated and 

validated using field data from three unique study regions such as: Chesapeake/Delaware 
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Bay, Mobile Bay, and the river Mississippi delta region in the Northern Gulf of Mexico. 

The newly developed index showed strong relationship with chl-a concentration (R2= 0.9, 

p<0.001) and yielded lower estimation error (RMSE~2 mg m-3, chl-a range: 0.9-28.1 mg 

m-3) as compared to many existing chl-a empirical algorithms for turbid productive 

waters. NDCI chl-a algorithm was applied to MERIS images over the Chesapeake Bay 

and Delaware Bay, the Mobile Bay, and the Mississippi River delta region and spatial 

distribution of surface chl-a was mapped. NDCI was successful in predicting chl-a 

concentration with approximately 12% overall bias for all above study regions.  

7.2 Future research 

In the past, most of the remote sensing study of water quality and clarity have 

addressed algorithm development as well as issues of temporal and spatial variation of 

chl-a, (Carder et al., 1999, O’Reilly et al, 1998; O’Reilly et al, 2000, Gons et al., 2002, 

Dallolmo et al, 2005; Gons et al., 2008; Mishra and Mishra, 2012), suspended particulate 

matter (Miller and Mckee, 2002; D’Sa et al., 2007 ), and CDOM (Bricaud et al., 1981; 

Carder et al, 1999, Kutser et al., 2005; D’Sa et al., 2006; Ahn et al., 2008). However, 

very limited numbers of research have focused on remote sensing of PC (Dekker, 1993; 

Schalles and Yacobi, 2000; Vincent et al., 2004; Simis et al., 2005; Mishra et al., 2009). 

Most of the cyanobacteria remote sensing researches have been carried out in very 

selective inland lakes, estuaries and coastal waters (e.g., Lake Erie, Morse and Geist 

Reservoirs, IN, USA, Baltic Sea, Taihu Lake, China, and lakes are reservoirs in Spain 

and Netherlands). Future research should focus extensively on collection of 

cyanobacterial pigment data including PC, as well as inherent optical properties from 

geographically diverse and large water bodies for algorithm calibration/validation. 
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Especially, the newly developed algorithms in this dissertation are calibrated/optimized 

using a small dataset, but with a wide range of pigment concentration, collected from 

eutrophic to hypereutrophic waters. Many empirical models developed in this dissertation 

should be further calibrated and validated using a large dataset collected from different 

water bodies for accuracy assessment as well as to increase their transferability to other 

geographic regions.  

More importantly, very few researches have utilized remotely sensed satellite data 

products for calibration and validation of existing PC algorithms for monitoring 

cyanobacteria. Future effort should focus on application of algorithms to satellite data 

and develop cyanobacterial algal bloom related bio-physical data products for 

dissemination to the science community as well as to general public. At present, all PC 

algorithms use radiometric information measured at 620 nm. Fortunately a few existing 

and future ocean color sensors such as (1) Medium Resolution Imaging Spectrometer 

(MERIS),  a European space born remote sensor, (2) Hyperspectral Imager for the 

Coastal Ocean (HICO), and (3)The Hyperspectral Infrared Imager (HyspIRI) offers 

radiometric data at that band center.  Data products from these sensors can be used to 

develop tools to be used in an early warning system for detecting toxic algal blooms, and 

mapping the spatial and temporal distribution of toxic cyanobacteria in inland and coastal 

waters. 
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Table 7.1 Statistics of absolute relative error (%) of PC retrieval from all models. 

  Min Max Median Mean 
Empirical, Rrs(708)/Rrs(600)   
PC<250 mg m-3 8.16 43.62 34.15 28 
PC >250 mg m-3 16.6 16.87 16.74 16.74 
All Data 8.16 43.62 19.96 25.5 

 
Empirical, Rrs(708)/Rrs(620)   
PC <250 mg m-3 5.15 36.58 21.86 22.95 
PC >250 mg m-3 12.31 22.09 17.2 17.2 
All Data 5.15 36.58 21.86 21.67 

 
Semi-Analytical  
PC <250 mg m-3 0.02 239.69 80.32 94.7 
PC >250 mg m-3 3.64 45.64 35.79 27.13 
All Data 0.02 239.69 45.96 73.08 

 
Quasi-Analytical, mean ∗ (620) 
 

 
PC <250 mg m-3 0.42 250.62 46.52 56.58 
PC >250 mg m-3 0.14 34.6 12.72 14.42 
All Data 0.14 250.62 25.96 43.09 
 
Quasi-Analytical, Modeled ∗ (620) 
 

 

PC <250 mg m-3 2.83 278.8 44.74 57.79 
PC >250 mg m-3 3.87 57.6 17.76 23.42 
All Data 2.83 278.8 23.82 46.79 
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Figure 7.1 Comparison of absolute relative errors of PC retrieval from all models; in 
the legend, EA-600, EA-620 represents empirical models using reflectance 
ratios Rrs(708)/Rrs(600) and Rrs(708)/Rrs(620) respectively; SA is the semi-
analytical algorithm; QAA-1 and QAA-2 represents QAA with mean 
∗ 620  and modeled ∗ 620 .  

Min, max, median, and mean error of (a) samples with PC concentration <250 mg m-3, 
(b) samples with PC concentration >250 mg m-3, and (c) all data points. 
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 APPENDIX A

STEPS OF QUASI-ANALYTICAL ALGORITHM (QAA)  
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QAA takes above surface remote sensing reflectance as input and first calculates 

sub-surface remote sensing reflectance rrs, as: 

 / 0.52 1.7  (A.1) 

rrs is a function of u, the ratio of back scattering coefficient bb, to the sum of tatal 

absorption coefficients and backscattering coefficients. 

 	 	

	 	
 (A.2) 

u can be empirically derived from rrs as in Gordon et al.(1988): 

 
∗

∗
 (A.3) 

where	 0.089 and 0.125. Further, the QAA estimates total absorption 

coefficients at a reference wavelength, λ0. In the native form, QAA uses 555 or 650 nm as 

λ0 based on the level of turbidity. However, in another study, Mishra et al., (2012) have 

parameterized the QAA for extremely turbid and productive water where the λ0 was 

moved to 708 nm because of strong absorption by non-water optical constituents even at 

650 nm.  

 709 10 . . .  (A.4) 

 	 . ∗

. ∗ ∗
 (A.5) 

The QAA then analytically retrieves particulate backscattering coefficients at the 

reference wavelength, bbp(λ0). 

  (A.6) 
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The spectral power, η, is empirically estimated from: 

 2.0 1 1.2	 0.9  (A.7) 

Knowing bbp(λ0) and η , the QAA estimates bbp(λ) at other wavelengths from: 

  (A.8) 

The total absorption coefficient is then calculated as: 

  (A.9) 

The QAA further decomposed the total absorption spectrum into 1) aCDM, a combined 

absorption by colored dissolved organic matter (CDOM) and detrital matter, and 2) aφ(λ). 

 443  (A.10) 

 Where 0.74 .

. /
	 	 	  

 is then calculated using the exponential function as: 

 443 	  (A.11) 

Absorption coefficients by phytoplankton is then calculated as: 

  (A.12) 
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